scholarly journals Immobilizing Ni (II)-Exchanged Heteropolyacids on Silica as Catalysts for Acid-Catalyzed Esterification Reactions

2019 ◽  
Vol 65 (1) ◽  
pp. 21-27
Author(s):  
Qiuyun Zhang ◽  
Dandan Lei ◽  
Qianqian Luo ◽  
Taoli Deng ◽  
Jingsong Cheng ◽  
...  

Biodiesel was synthesized from oleic acid using Ni (II)-exchanged heteropolyacids immobilized on silica (Ni0.5H3SiW / SiO2 ) as a solid acid catalyst. Based on detailed analyses of FT-IR, XRD, TG and SEM, the structural, surface and thermal stability of Ni0.5H3SiW / SiO2 were investigated. Obtained results demonstrated that the Keggin structure was well in the immobilization process and possess a high thermal stability. Various esterification reaction conditions and reusability of catalyst were studied. High oleic acid conversion of 81.4 % was observed at a 1:22 mole ratio (oleic acid: methanol), 3 wt. % catalyst at 70 °C for 4 h. The Ni0.5H3SiW / SiO2 catalyst was reused for several times and presented relatively stable. More interestingly, the kinetic studies revealed the esterification process was compatible with the first order model, and a lower activation energy was obtained in this catalytic system.

2012 ◽  
Vol 545 ◽  
pp. 373-378 ◽  
Author(s):  
Wan Nor Roslam Wan Isahak ◽  
Manal Ismail ◽  
Norasikin Mohd Nordin ◽  
Nadia Farhana Adnan ◽  
Jamaliah Mohd Jahim ◽  
...  

In this work, we were study the selective synthesis of GME from oleic acid and glycerol using two types of solid heteropoly acid catalysts, namely silicotungstic acid bulk (STAB) and STA-silica sol gel (STA-SG). The performance and selectivity of STAB and STA-SG in the esterification reaction have been investigated and compared to the sulphuric acid (H2SO4) as conventional homogeneous catalyst. The catalysts were then characterized their physical and chemical properties using BET, XRD, TEM and XPS. XPS analyses were shown a significant formation of W-O-Si, W-O-W and Si-O-Si bonding in STA-SG compared to that in STAB. The main spectra of O1s (90.74 %, 531.5 eV) followed by other O1s peak (9.26 %, 532.8 eV) were due to the presence of W-O-W and W-O-Si bonds, respectively. The STA-SG catalyst was found to be the more environmentally benign solid acid catalyst for the esterification reaction between oleic acid and glycerol due to its lower toxicity in terms of the relatively lower pH value (pH 3.7) than the STAB (pH 2.8). In addition, the ease of separation for STA-SG catalyst was attributed to its insoluble state in the product phase. The esterification products were then analysed by FTIR and HPLC. Both the H2SO4 and the STAB gave high conversion of 100 % and 98 %, but at a lower selectivity of GME with 81.6% and 89.9%, respectively. On the contrary, the STA-SG enabled a conversion of 94 %, but with a significantly higher GME selectivity of 95 % rendering it the more efficient solid acid catalyst.


2018 ◽  
Vol 43 ◽  
pp. 01002
Author(s):  
Rudy Syah Putra ◽  
Tasyrifatur Rahma

A novel solid acid catalyst, which was prepared from sodium alginate and aluminum chlorides and characterized by SEM-EDS, XRD and FT-IR spectrometry. The catalyst was used for the synthesis of fatty acid methyl ester (FAME) via (trans)esterification reaction using electrolysis process. Purity and FAME components of biodiesel were measured by GC-MS. The results showed that the aluminum-alginate prepared in a cheap and easy way exhibited high catalytic activity. FAME conversion from used-cooking oil was obtained by 93.82% in the presence of 10 wt.% of catalyst dosage upon refluxing for 4 h of methanol and oil in a molar ratio of 6:1.


2018 ◽  
Vol 156 ◽  
pp. 03002
Author(s):  
Iwan Ridwan ◽  
Mukhtar Ghazali ◽  
Adi Kusmayadi ◽  
Resza Diwansyah Putra ◽  
Nina Marlina ◽  
...  

The oleic acid solubility in methanol is low due to two phase separation, and this causes a slow reaction time in biodiesel production. Tetrahydrofuran as co-solvent can decrease the interfacial surface tension between methanol and oleic acid. The objective of this study was to investigate the effect of co-solvent, methanol to oleic acid molar ratio, catalyst amount, and temperature of the reaction to the free fatty acid conversion. Oleic acid esterification was conducted by mixing oleic acid, methanol, tetrahydrofuran and Amberlyst 15 as a solid acid catalyst in a batch reactor. The Amberlyst 15 used had an exchange capacity of 2.57 meq/g. Significant free fatty acid conversion increments occur on biodiesel production using co-solvent compared without co-solvent. The highest free fatty acid conversion was obtained over methanol to the oleic acid molar ratio of 25:1, catalyst use of 10%, the co-solvent concentration of 8%, and a reaction temperature of 60°C. The highest FFA conversion was found at 28.6 %, and the steady state was reached after 60 minutes. In addition, the use of Amberlyst 15 oleic acid esterification shows an excellent performance as a solid acid catalyst. Catalytic activity was maintained after 4 times repeated use and reduced slightly in the fifth use.


2020 ◽  
Vol 213 ◽  
pp. 01003
Author(s):  
Hui Li ◽  
Xi Cao ◽  
Huiting He ◽  
Jian Liu ◽  
Weijian Xiang ◽  
...  

A novel solid-acid catalyst (PVC-EDA-SO4H) based on polyvinyl chloride (PVC) were prepared after amination of Ethylenediamine (EDA) and anchorage of sulfuric acid. The as-prepared catalyst was characterized by FT-IR, Element analysis, Chemical titration and Thermal analysis, the results indicated that the sulfuric acid was successfully anchored on PVC. The PVC-EDA-SO4H showed excellent catalytic performance for the synthesis of bisphenol F, and achieved almost high yield and selectivity (94%) of BPF under the mind reaction conditions. Meanwhile, exhibited excellent reusability without the significant loss after six cycles via simple filtration.


RSC Advances ◽  
2018 ◽  
Vol 8 (7) ◽  
pp. 3657-3662 ◽  
Author(s):  
Shuolin Zhou ◽  
Dabo Jiang ◽  
Xianxiang Liu ◽  
Yiping Chen ◽  
Dulin Yin

TiO2 nanotubes-bonded organosulfonic acid as a hybrid catalyst exhibited better activity and good reusability for esterification reaction.


Catalysts ◽  
2019 ◽  
Vol 9 (1) ◽  
pp. 67 ◽  
Author(s):  
Muhammad Hossain ◽  
Md Siddik Bhuyan ◽  
Abul Md Ashraful Alam ◽  
Yong Seo

The aim of this research was to synthesize, characterize, and apply a heterogeneous acid catalyst to optimum biodiesel production from hydrolyzed waste cooking oil via an esterification reaction, to meet society’s future demands. The solid acid catalyst S–TiO2/SBA-15 was synthesized by a direct wet impregnation method. The prepared catalyst was evaluated using analytical techniques, X-ray diffraction (XRD), Scanning electron microscopy (SEM) and the Brunauer–Emmett–Teller (BET) method. The statistical analysis of variance (ANOVA) was studied to validate the experimental results. The catalytic effect on biodiesel production was examined by varying the parameters as follows: temperatures of 160 to 220 °C, 20–35 min reaction time, methanol-to-oil mole ratio between 5:1 and 20:1, and catalyst loading of 0.5%–1.25%. The maximum biodiesel yield was 94.96 ± 0.12% obtained under the optimum reaction conditions of 200 °C, 30 min, and 1:15 oil to methanol molar ratio with 1.0% catalyst loading. The catalyst was reused successfully three times with 90% efficiency without regeneration. The fuel properties of the produced biodiesel were found to be within the limits set by the specifications of the biodiesel standard. This solid acid catalytic method can replace the conventional homogeneous catalyzed transesterification of waste cooking oil for biodiesel production.


2014 ◽  
Vol 881-883 ◽  
pp. 297-301 ◽  
Author(s):  
Yan Zhi Liu ◽  
Shun Ping Wang ◽  
Kun Yuan ◽  
Huian Tang

The solid acid catalyst (ACSA) for the gutter oil esterification to biodiesel was prepared via active carbon as raw material by introducing the-SO3H group onto the surface of it. The ACSA were characterized by Fourier transform infrared spectroscopy (FT-IR), thermogravimetric analysis (TGA) and elemental analysis (EA), respectively. And the results showed that the-SO3H groups were successfully introduced onto the surface of the active carbon and the containing of the-SO3H groups are higher than 0.017g per gram of ACSA.


2020 ◽  
Vol 152 ◽  
pp. 320-330 ◽  
Author(s):  
Czarina M. Mendaros ◽  
Alchris W. Go ◽  
Winston Jose T. Nietes ◽  
Babe Eden Joy O. Gollem ◽  
Luis K. Cabatingan

Sign in / Sign up

Export Citation Format

Share Document