Electrodeposition of submicron/nanoscale Cu2O/Cu junctions in an ultrathin CuSO4 solution layer

2010 ◽  
Vol 638 (2) ◽  
pp. 225-230 ◽  
Author(s):  
Guangwei Yu ◽  
Xiaobo Hu ◽  
Duo Liu ◽  
Daliang Sun ◽  
Jing Li ◽  
...  
1994 ◽  
Vol 48 (12) ◽  
pp. 1522-1528 ◽  
Author(s):  
F. Hartl ◽  
H. Luyten ◽  
H. A. Nieuwenhuis ◽  
G. C. Schoemaker

This article describes the construction of a novel optically transparent thin-layer electrochemical (OTTLE) cell for IR and UV-Vis spectroelectrochemical experiments at variable temperature. The cell has a three-electrode set melt-sealed into a smooth polyethylene spacer which is sandwiched between two CaF2 windows. The width of this spacer (0.18–0.20 mm) defines the thickness of the thin solution layer. The whole electrode assembly is housed in a thermostated Cu block of the OTTLE cell which fits into a double-walled nitrogen-bath cryostat. The experimental setup permits relatively fast electrolysis within the tested temperature range of 295 to 173 K under strictly anaerobic conditions and protection of light-sensitive compounds. Other important merits of the cell design include lack of leakage, facile cleaning, almost negligible variation of the preset temperature, and facile manipulation in the course of the experiments. The applicability of the variable-temperature IR/UV-Vis OTTLE cell is demonstrated by stabilization of a few electrogenerated carbonyl complexes of Mn(I) and Ru(II) with 3,5-di- tert. butyl-1,2-benzo(semi)quinone (DB(S)Q) and N, N′-diisopropyl-1,4-diaza-1,3-butadiene (iPr-DAB) ligands, respectively, at appropriately low temperatures.


1999 ◽  
Vol 556 ◽  
Author(s):  
A. Honda ◽  
N Taniguchi ◽  
H. Ishikawa ◽  
M. Kawasaki

AbstractThis paper describes a modeling study for general corrosion of copper which is a candidate material for high-level radioactive waste overpacks. The model is a mixed-potential model combined with diffusive transport of reactants and reaction products. The rest potential and corrosion rate of copper in aerated solution were measured while controlling the thickness of a diffusive solution layer on the copper surface using a rotating-disk electrode. Experimental data were used for validation of the model.


2011 ◽  
Vol 179-180 ◽  
pp. 70-74
Author(s):  
Jiu Mei Xiao

A simple process to fabricate porous polyimide membranes (PPMs) and effect of warm-up temperature rates on morphologies of the PPMs were reported in this paper. The polymer solution layer consisting of the corresponding polyamic acid (PAA), solvent and the pore forming agents with high boiling temperature or high decomposition temperature was first treated under a lower temperature (about 150°C). The received solid membrane was further imidized by a higher temperature (about 270°C) and the pore forming agents were removed from the membrane at a temperature above their boiling temperature or decomposition temperature at last. Then a PPM was obtained. As the temperature was elevated gradually, the porosity of the received PAA membrane was lower than that of the PPM treated by a faster warm-up temperature rate.


Author(s):  
D. S. Vokhmyanin ◽  
S. A. Oglezneva

Surface preparation is a prerequisite for ensuring the required properties of a diamond film obtained by gas-phase deposition. The paper considers the effect of temperature and concentration of the etchant CuSO4 on the structural and phase composition of the surface of hard-alloy materials. The structural and phase composition of a continuous polycrystalline diamond film at its growth stages was also studied. Adhesion of the obtained diamond films to the surface of carbide materials was qualitatively determined. It has been established that surface treatment of a hard alloy in a CuSO4 solution at a temperature t = 23 °C leads to unequal removal of the cobalt bond with chipping of WC grains and the formation of a porous structure in the surface layer of the WC–6%Co alloy. The treatment with an etchant CuSO4 at t = –2 °С ensures uniform etching of the Co-bond along the WC grain boundaries and the formation of a chemically uniform surface. The orientational growth and adhesion of the diamond film depend on the elemental composition of the surface of the WC–Co alloy after treatment with a CuSO4 solution. If the treatment was carried out at a tsolution = 23 °C, then during the synthesis of the diamond film, the removal of copper from the defective surface layer of WC is difficult. This provides the multidirectional growth of diamond crystals in the film in two directions: <111> and <110>, which causes critical biaxial compressive stresses (2,5 GPa) and leads to low adhesion of the film to the surface of the hard alloy. If the treatment was carried out at tsolution = –2 °C, then the orientational growth of diamond crystals in the film occurs in one preferential crystallographic direction <111>. It reduces the biaxial compressive stresses (1,7 GPa) and increases the adhesive adhesion of the film to the surface of the hard alloy . The structure defect, calculated from the ratio of the lines of integrated intensities I1333 / I1580 using the Raman spectroscopy, decreases with concentration growth for negative temperatures and increases for positive ones of CuSO4 solution during surface preparation.


Sign in / Sign up

Export Citation Format

Share Document