Impact of near-future ocean warming and acidification on the larval development of coral-eating starfish Acanthaster cf. solaris after parental exposure

2022 ◽  
Vol 548 ◽  
pp. 151685
Author(s):  
Thomas Hue ◽  
Olivier Chateau ◽  
Gael Lecellier ◽  
Claire Marin ◽  
Noemie Coulombier ◽  
...  
2020 ◽  
Vol 162 ◽  
pp. 105164
Author(s):  
Thomas Hue ◽  
Olivier Chateau ◽  
Gael Lecellier ◽  
Mohsen Kayal ◽  
Noeline Lanos ◽  
...  

2020 ◽  
Vol 33 (2) ◽  
pp. 477-496 ◽  
Author(s):  
Shang-Min Long ◽  
Shang-Ping Xie ◽  
Yan Du ◽  
Qinyu Liu ◽  
Xiao-Tong Zheng ◽  
...  

AbstractThe 2015 Paris Agreement proposed targets to limit global-mean surface temperature (GMST) rise well below 2°C relative to preindustrial level by 2100, requiring a cease in the radiative forcing (RF) increase in the near future. In response to changing RF, the deep ocean responds slowly (ocean slow response), in contrast to the fast ocean mixed layer adjustment. The role of the ocean slow response under low warming targets is investigated using representative concentration pathway (RCP) 2.6 simulations from phase 5 of the Coupled Model Intercomparison Project. In RCP2.6, the deep ocean continues to warm while RF decreases after reaching a peak. The deep ocean warming helps to shape the trajectories of GMST and fuels persistent thermosteric sea level rise. A diagnostic method is used to decompose further changes after the RF peak into a slow warming component under constant peak RF and a cooling component due to the decreasing RF. Specifically, the slow warming component amounts to 0.2°C (0.6°C) by 2100 (2300), raising the hurdle for achieving the low warming targets. When RF declines, the deep ocean warming takes place in all basins but is the most pronounced in the Southern Ocean and Atlantic Ocean where surface heat uptake is the largest. The climatology and change of meridional overturning circulation are both important for the deep ocean warming. To keep the GMST rise at a low level, substantial decrease in RF is required to offset the warming effect from the ocean slow response.


2011 ◽  
Vol 69 (3) ◽  
pp. 460-464 ◽  
Author(s):  
Steve S. Doo ◽  
Symon A. Dworjanyn ◽  
Shawna A. Foo ◽  
Natalie A. Soars ◽  
Maria Byrne

Abstract Doo, S. S., Dworjanyn, S. A., Foo, S. A., Soars, N. A., and Byrne, M. 2012. Impacts of ocean acidification on development of the meroplanktonic larval stage of the sea urchin Centrostephanus rodgersii. – ICES Journal of Marine Science, 69: 460–464. The effects of near-future ocean acidification/hypercapnia on larval development were investigated in the sea urchin Centrostephanus rodgersii, a habitat-modifying species from eastern Australia. Decreased pH (−0.3 to −0.5 pH units) or increased pCO2 significantly reduced the percentage of normal larvae. Larval growth was negatively impacted with smaller larvae in the pH 7.6/1800 ppm treatments. The impact of acidification on development was similar on days 3 and 5, indicating deleterious effects early in development. On day 3, increased abnormalities in the pH 7.6/1600 ppm treatment were seen in aberrant prism stage larvae and arrested/dead embryos. By day 5, echinoplutei in this treatment had smaller arm rods. Observations of smaller larvae in C. rodgersii have significant implications for this species because larval success may be a potential bottleneck for persistence in a changing ocean.


2009 ◽  
Vol 276 (1663) ◽  
pp. 1883-1888 ◽  
Author(s):  
Maria Byrne ◽  
Melanie Ho ◽  
Paulina Selvakumaraswamy ◽  
Hong D. Nguyen ◽  
Symon A. Dworjanyn ◽  
...  

Global warming is causing ocean warming and acidification. The distribution of Heliocidaris erythrogramma coincides with the eastern Australia climate change hot spot, where disproportionate warming makes marine biota particularly vulnerable to climate change. In keeping with near-future climate change scenarios, we determined the interactive effects of warming and acidification on fertilization and development of this echinoid. Experimental treatments (20–26°C, pH 7.6–8.2) were tested in all combinations for the ‘business-as-usual’ scenario, with 20°C/pH 8.2 being ambient. Percentage of fertilization was high (>89%) across all treatments. There was no difference in percentage of normal development in any pH treatment. In elevated temperature conditions, +4°C reduced cleavage by 40 per cent and +6°C by a further 20 per cent. Normal gastrulation fell below 4 per cent at +6°C. At 26°C, development was impaired. As the first study of interactive effects of temperature and pH on sea urchin development, we confirm the thermotolerance and pH resilience of fertilization and embryogenesis within predicted climate change scenarios, with negative effects at upper limits of ocean warming. Our findings place single stressor studies in context and emphasize the need for experiments that address ocean warming and acidification concurrently. Although ocean acidification research has focused on impaired calcification, embryos may not reach the skeletogenic stage in a warm ocean.


2015 ◽  
Vol 162 (7) ◽  
pp. 1463-1472 ◽  
Author(s):  
Eliseba García ◽  
Sabrina Clemente ◽  
Cataisa López ◽  
Justin S. McAlister ◽  
José Carlos Hernández

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Rael Horwitz ◽  
Tommy Norin ◽  
Sue-Ann Watson ◽  
Jennifer C. A. Pistevos ◽  
Ricardo Beldade ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document