Analysis of the spatial association network structure of China's transportation carbon emissions and its driving factors

2020 ◽  
Vol 253 ◽  
pp. 109765 ◽  
Author(s):  
Caiquan Bai ◽  
Lei Zhou ◽  
Minle Xia ◽  
Chen Feng
2021 ◽  
Vol 9 ◽  
Author(s):  
Chen Feng ◽  
Yuansheng Wang ◽  
Rong Kang ◽  
Lei Zhou ◽  
Caiquan Bai ◽  
...  

Based on the provincial panel data of China from 2001 to 2016, this study uses the social network analysis approach to empirically investigate the characteristics and driving factors of the spatial association network of China’s interprovincial renewable energy technology innovation. The findings are as following. 1) The spatial association of China’s interprovincial renewable energy technology innovation exhibits a typical network structure. Moreover, its network density, network hierarchy and network efficiency are 0.3696, 0.6667 and 0.7833 in 2001 and 0.4084, 0.4764 and 0.7044 in 2016, respectively, implying the spatial association network became more and more complex and the interprovincial association strengthened during the sample period. 2) This spatial association network presents a “core-edge” distribution pattern. The positions and roles of various provinces vary greatly in the spatial association network. Specifically, the developed coastal regions such as Shanghai, Beijing and Tianjin have a degree centrality, closeness centrality and betweenness centrality of above 75, 80 and 10, respectively, indicating that they always play a central role in the network. However, the northeastern regions and the relatively backward central and western regions such as Heilongjiang, Jilin, Xinjiang, Hainan and Hebei only have a degree centrality, closeness centrality and betweenness centrality of below 20, 55 and 0.1, respectively, indicating that they are at a relatively marginal position. 3) The geographical proximity and the expansion of the differences in economic development level and R&D inputs are conducive to the enhancement of the spatial association of China’s renewable energy technology innovation.


2021 ◽  
Vol 13 (3) ◽  
pp. 1339
Author(s):  
Ziyuan Chai ◽  
Zibibula Simayi ◽  
Zhihan Yang ◽  
Shengtian Yang

In order to achieve the carbon emission reduction targets in Xinjiang, it has become a necessary condition to study the carbon emission of households in small and medium-sized cities in Xinjiang. This paper studies the direct carbon emissions of households (DCEH) in the Ebinur Lake Basin, and based on the extended STIRPAT model, using the 1987–2017 annual time series data of the Ebinur Lake Basin in Xinjiang to analyze the driving factors. The results indicate that DCEH in the Ebinur Lake Basin during the 31 years from 1987 to 2017 has generally increased and the energy structure of DCEH has undergone tremendous changes. The proportion of coal continues to decline, while the proportion of natural gas, gasoline and diesel is growing rapidly. The main positive driving factors affecting its carbon emissions are urbanization, vehicle ownership and GDP per capita, while the secondary driving factor is residents’ year-end savings. Population, carbon intensity and energy consumption structure have negative effects on carbon emissions, of which energy consumption structure is the main factor. In addition, there is an environmental Kuznets curve between DCEH and economic development, but it has not yet reached the inflection point.


Energies ◽  
2018 ◽  
Vol 11 (10) ◽  
pp. 2706 ◽  
Author(s):  
Feng Wang ◽  
Mengnan Gao ◽  
Juan Liu ◽  
Wenna Fan

Under the “new normal”, China is facing more severe carbon emissions reduction targets. This paper estimates the carbon emission data of various provinces in China from 2008 to 2014, constructs a revised gravity model, and analyzes the network structure and effects of carbon emissions in various provinces by using social network analysis (SNA) and quadratic assignment procedure (QAP) analysis methods. The conclusions show that there are obvious spatial correlations between China’s provinces and regions in terms of carbon emissions: Tianjin, Shanghai, Zhejiang, Jiangsu and Guangdong are in the center of the carbon emission network, and play the role of “bridges”. Carbon emissions can be divided into four blocks: “bidirectional spillover block”, “net beneficial block”, “net spillover block” and “broker block”. The differences in the energy consumption, economic level and geographical location of the provinces have a significant impact on the spatial correlation relationship of carbon emissions. Finally, the improvement of the robustness of the overall network structure and the promotion of individual network centrality can significantly reduce the intensity of carbon emissions.


2021 ◽  
Vol 248 ◽  
pp. 02026
Author(s):  
Hua Gao ◽  
Zhoujie Huang

After further processing the input-output tables of 2007, 2012 and 2017, the carbon emissions are decomposed into four driving factors: energy intensity effect, Leontief technology effect, final demand structure effect and final total demand effect through IO-SDA model. The results show that the energy intensity effect has a significant negative effect, which is the main factor to promote the reduction of carbon emissions. The Leontief technical effect and the final total demand effect are positive effects, and the total final demand effect is the main factor leading to the increase in carbon emissions, and the effect of the final demand structure effect is not significant. In addition, the results of the influence coefficient and the inductance coefficient show that: metal smelting and rolling manufacturing, petroleum processing and coking and nuclear fuel processing, coal mining and processing, and oil and gas mining and processing industries are high-energy-consuming industries, but the status of the basic industry makes it possible to formulate energy-saving policies only in terms of technological progress.


Sign in / Sign up

Export Citation Format

Share Document