Driving factors of the changes in the carbon emissions in the Chinese construction industry

2017 ◽  
Vol 166 ◽  
pp. 615-627 ◽  
Author(s):  
Qian Shi ◽  
Jindao Chen ◽  
Liyin Shen
2021 ◽  
Vol 13 (3) ◽  
pp. 1339
Author(s):  
Ziyuan Chai ◽  
Zibibula Simayi ◽  
Zhihan Yang ◽  
Shengtian Yang

In order to achieve the carbon emission reduction targets in Xinjiang, it has become a necessary condition to study the carbon emission of households in small and medium-sized cities in Xinjiang. This paper studies the direct carbon emissions of households (DCEH) in the Ebinur Lake Basin, and based on the extended STIRPAT model, using the 1987–2017 annual time series data of the Ebinur Lake Basin in Xinjiang to analyze the driving factors. The results indicate that DCEH in the Ebinur Lake Basin during the 31 years from 1987 to 2017 has generally increased and the energy structure of DCEH has undergone tremendous changes. The proportion of coal continues to decline, while the proportion of natural gas, gasoline and diesel is growing rapidly. The main positive driving factors affecting its carbon emissions are urbanization, vehicle ownership and GDP per capita, while the secondary driving factor is residents’ year-end savings. Population, carbon intensity and energy consumption structure have negative effects on carbon emissions, of which energy consumption structure is the main factor. In addition, there is an environmental Kuznets curve between DCEH and economic development, but it has not yet reached the inflection point.


2020 ◽  
Vol 12 (4) ◽  
pp. 1428 ◽  
Author(s):  
Na Lu ◽  
Shuyi Feng ◽  
Ziming Liu ◽  
Weidong Wang ◽  
Hualiang Lu ◽  
...  

As the largest carbon emitter in the world, China is confronted with great challenges of mitigating carbon emissions, especially from its construction industry. Yet, the understanding of carbon emissions in the construction industry remains limited. As one of the first few attempts, this paper contributes to the literature by identifying the determinants of carbon emissions in the Chinese construction industry from the perspective of spatial spillover effects. A panel dataset of 30 provinces or municipalities from 2005 to 2015 was used for the analysis. We found that there is a significant and positive spatial autocorrelation of carbon emissions. The local Moran’s I showed local agglomeration characteristics of H-H (high-high) and L-L (low-low). The indicators of population density, economic growth, energy structure, and industrial structure had either direct or indirect effects on carbon emissions. In particular, we found that low-carbon technology innovation significantly reduces carbon emissions, both in local and neighboring regions. We also found that the industry agglomeration significantly increases carbon emissions in the local regions. Our results imply that the Chinese government can reduce carbon emissions by encouraging low-carbon technology innovations. Meanwhile, our results also highlight the negative environmental impacts of the current policies to promote industry agglomeration.


Author(s):  
Begum Sertyesilisik

Green innovations are important in enhancing sustainability performance of the industries and of their outputs. They can influence the carbon emissions, energy efficiency of the industries affecting global green trade, and energy policies. Construction industry is one of the main industries contributing to the global economy and sustainable development. It has, however, bigger environmental footprint than majority of the other industries. Green innovations can contribute to the reduction in the environmental footprint of the construction industry. For this reason, green innovation in the construction industry needs to be supported by the effective policies. This chapter aims to introduce and investigate the political economy of the green innovations in the construction industry. This chapter emphasizes that the effectiveness of the green innovations in the construction industry can be fostered by effective political economy and strategies.


2013 ◽  
Vol 838-841 ◽  
pp. 2818-2822
Author(s):  
Su Xian Zhang ◽  
Xian Wei Tang

With the highly praised development of low-carbon and implementation of western development strategy, the various industries of northwest faced great stress with how to weigh the economic growth and reduce carbon emissions. In this study, based on the data about energy consumption and GDP in the construction industry of five northwestern provinces, and estimates the carbon emissions of construction indirectly. Then combined withDecoupling Theoryanalysis the interacted impact among carbon emissions, energy consumption and economic growth in the construction industry of five northwestern provinces .The results shows that the development of construction industry in provinces is still based on high energy consumption and high carbon emissions, but each impact degree of them are different. Finally, put some suggest improvements to reduce the energy consumption and carbon emissions in the construction industry path of five northwestern provinces.


2021 ◽  
Vol 248 ◽  
pp. 02026
Author(s):  
Hua Gao ◽  
Zhoujie Huang

After further processing the input-output tables of 2007, 2012 and 2017, the carbon emissions are decomposed into four driving factors: energy intensity effect, Leontief technology effect, final demand structure effect and final total demand effect through IO-SDA model. The results show that the energy intensity effect has a significant negative effect, which is the main factor to promote the reduction of carbon emissions. The Leontief technical effect and the final total demand effect are positive effects, and the total final demand effect is the main factor leading to the increase in carbon emissions, and the effect of the final demand structure effect is not significant. In addition, the results of the influence coefficient and the inductance coefficient show that: metal smelting and rolling manufacturing, petroleum processing and coking and nuclear fuel processing, coal mining and processing, and oil and gas mining and processing industries are high-energy-consuming industries, but the status of the basic industry makes it possible to formulate energy-saving policies only in terms of technological progress.


Sign in / Sign up

Export Citation Format

Share Document