Vegetation structure parameters determine high burn severity likelihood in different ecosystem types: A case study in a burned Mediterranean landscape

2021 ◽  
Vol 288 ◽  
pp. 112462
Author(s):  
José Manuel Fernández-Guisuraga ◽  
Susana Suárez-Seoane ◽  
Paula García-Llamas ◽  
Leonor Calvo
1998 ◽  
Vol 20 (1) ◽  
pp. 132 ◽  
Author(s):  
RJ Fensham ◽  
JE Holman

Fifteen references to vegetation structure from the historical land survey record for the eastern Darling Downs were calibrated with historical photographs to determine the use of the surveyors' structural terminology (Open: 'open', 'light': Dense: 'heavy', 'thick', 'dense'). Sites with less than 40% canopy cover were only described by terms included within the Open category, and sites with greater than 50% canopy cover were only described by terms included within the Dense category. These results provide calibrations of the surveyors' structural terminology indicating terms were unambiguously applied outside the 40-50% canopy cover range. The use of corner tree distances as an absolute measure of vegetation density is warned against because corner trees had to meet certain criteria and were not necessarily the nearest tree to any corner. However, the distance from allotment corners to "corner trees" provided a measure of the relative use of the surveyor's structural epithets and is consistent with standard application among their fraternity. Survey records dating from 1864-1910 were compared with the structure of existing remnants (projective crown cover measured from recent 1:25,000 aerial photography) to assess changes in vegetation structure. The analysis suggests that 88% of the 34 sites included in the analysis have not changed from the broad structural category that was assigned by the surveyors. Using the assumptions developed by this study, two sites were assessed as having thickened substantially. These results suggest that only minor vegetation thickening has occurred in the Darling Downs since the early land surveys. This conclusion is supported by direct comparison of the historical photographs with existing remnants. indicating that only one site out of 17 has thickened substantially.


2014 ◽  
Vol 16 (3) ◽  
pp. 47-58
Author(s):  
Cristiana-Maria Ciocanea ◽  
Athanasios-Alexandru Gavrilidis ◽  
Vasile Bagrinovschi

Abstract “Iron Gates” Natural Park is located in the South-Western part of Romania and is recognized for its great diversity of ecosystems, wide variety of species and emblematic landscapes. Due to its Mediterranean climatic influences and vegetation structure, the area is a suitable habitat for the existence and development of Testudo hermanni boettgeri. Monitoring both, the evolution of the microclimatic features in the lower Eșelnița watershed and the species behaviour, represents a useful step in order to determine if the global climate change endangers the conservation management of the tortoise.


2020 ◽  
Vol 13 (2) ◽  
pp. 537-564 ◽  
Author(s):  
Matthias J. R. Speich ◽  
Massimiliano Zappa ◽  
Marc Scherstjanoi ◽  
Heike Lischke

Abstract. We present FORHYCS (FORests and HYdrology under Climate Change in Switzerland), a distributed ecohydrological model to assess the impact of climate change on water resources and forest dynamics. FORHYCS is based on the coupling of the hydrological model PREVAH and the forest landscape model TreeMig. In a coupled simulation, both original models are executed simultaneously and exchange information through shared variables. The simulated canopy structure is summarized by the leaf area index (LAI), which affects local water balance calculations. On the other hand, an annual drought index is obtained from daily simulated potential and actual transpiration. This drought index affects tree growth and mortality, as well as a species-specific tree height limitation. The effective rooting depth is simulated as a function of climate, soil, and simulated above-ground vegetation structure. Other interface variables include stomatal resistance and leaf phenology. Case study simulations with the model were performed in the Navizence catchment in the Swiss Central Alps, with a sharp elevational gradient and climatic conditions ranging from dry inner-alpine to high alpine. In a first experiment, the model was run for 500 years with different configurations. The results were compared against observations of vegetation properties from national forest inventories, remotely sensed LAI, and high-resolution canopy height maps from stereo aerial images. Two new metrics are proposed for a quantitative comparison of observed and simulated canopy structure. In a second experiment, the model was run for 130 years under climate change scenarios using both idealized temperature and precipitation change and meteorological forcing from downscaled GCM-RCM model chains. The first experiment showed that model configuration greatly influences simulated vegetation structure. In particular, simulations where height limitation was dependent on environmental stress showed a much better fit to canopy height observations. Spatial patterns of simulated LAI were more realistic than for uncoupled simulations of the forest landscape model, although some model deficiencies are still evident. Under idealized climate change scenarios, the effect of the coupling varied regionally, with the greatest effects on simulated streamflow (up to 60 mm yr−1 difference with respect to a simulation with static vegetation parameters) seen at the valley bottom and in regions currently above the treeline. This case study shows the importance of coupling hydrology and vegetation dynamics to simulate the impact of climate change on ecosystems. Nevertheless, it also highlights some challenges of ecohydrological modeling, such as the need to realistically simulate the plant response to increased CO2 concentrations and process uncertainty regarding future land cover changes.


2019 ◽  
Author(s):  
Matthias J. R. Speich ◽  
Massimiliano Zappa ◽  
Marc Scherstjanoi ◽  
Heike Lischke

Abstract. We present FORHYCS (FORests and HYdrology under Climate Change in Switzerland), a distributed ecohydrological model to assess the impact of climate change on water resources and forest dynamics. FORHYCS is based on the coupling of the hydrological model PREVAH and the forest landscape model TreeMig. In a coupled simulation, both original models are executed simultaneously and exchange information through shared variables. The simulated canopy structure is summarized by the leaf area index (LAI), which affects local water balance calculations. On the other hand, an annual drought index is obtained from daily simulated potential and actual transpiration. This drought index affects tree growth and mortality, as well as a species-specific tree height limitation. The effective rooting depth is simulated as a function of climate, soil and simulated above-ground vegetation structure. Other interface variables include stomatal resistance and leaf phenology. Case study simulations with the model were performed in the Navizence catchment in the Central Swiss Alps, with a sharp elevational gradient and climatic conditions ranging from dry inneralpine to high alpine. In a first experiment, the model was run for 500 years with different configurations. The results were compared against observations of vegetation properties from national forest inventories, remotely sensed LAI and high-resolution canopy height maps from stereo aerial images. Two new metrics are proposed for a quantitative comparison of observed and simulated canopy structure. In a second experiment, the model was run for 130 years under idealized climate change scenarios: daily temperature was increased by up to 6 K, and precipitation altered by 10 %, with a gradual change over 35 years. The first experiment showed that model configuration greatly influences simulated vegetation structure. In particular, simulations where height limitation was dependent on environmental stress showed a much better fit to canopy height observations. Spatial patterns of simulated LAI were more realistic than for uncoupled simulations of the forest landscape model, although some model deficiencies are still evident. Under idealized climate change scenarios, the effect of the coupling varied regionally, with the greatest effects on simulated streamflow (up to 40 mm y−1 difference with respect to a simulation with static vegetation parameters) seen at the valley bottom and in regions currently above the treeline. This case study shows the importance of coupling hydrology and vegetation dynamics to simulate the impact of climate change on ecosystems. Nevertheless, it also highlights some challenges of ecohydrological modelling, such as the need to realistically simulate plant response to increased CO2 concentrations, and process uncertainty regarding future land cover changes.


GeoJournal ◽  
2018 ◽  
Vol 84 (3) ◽  
pp. 795-811 ◽  
Author(s):  
Giuseppe Bazan ◽  
Angelo Castrorao Barba ◽  
Antonio Rotolo ◽  
Pasquale Marino

Author(s):  
Thomas Jagdhuber ◽  
Carsten Montzka ◽  
Carlos Lopez-Martinez ◽  
Martin J. Baur ◽  
Moritz Link ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document