Novel insights into enhanced dewaterability and consolidation characteristics of landfill sludge and fresh sludge conditioned by Fe2+ activated sodium persulfate

2021 ◽  
Vol 296 ◽  
pp. 113196
Author(s):  
Yajun Wu ◽  
Xingtao Zhang ◽  
Xudong Zhang ◽  
Yang Xu ◽  
Haiqiang Zhang
Keyword(s):  
Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1877
Author(s):  
Kai-Hung Yang ◽  
Gabriella Lindberg ◽  
Bram Soliman ◽  
Khoon Lim ◽  
Tim Woodfield ◽  
...  

Recent advances highlight the potential of photopolymerizable allylated gelatin (GelAGE) as a versatile hydrogel with highly tailorable properties. It is, however, unknown how different photoinitiating system affects the stability, gelation kinetics and curing depth of GelAGE. In this study, sol fraction, mass swelling ratio, mechanical properties, rheological properties, and curing depth were evaluated as a function of time with three photo-initiating systems: Irgacure 2959 (Ig2959; 320–500 nm), lithium phenyl-2,4,6-trimethylbenzoylphosphinate (LAP; 320–500 nm), and ruthenium/sodium persulfate (Ru/SPS; 400–500 nm). Results demonstrated that GelAGE precursory solutions mixed with either Ig2959 or LAP remained stable over time while the Ru/SPS system enabled the onset of controllable redox polymerization without irradiation during pre-incubation. Photo-polymerization using the Ru/SPS system was significantly faster (<5 s) compared to both Ig2959 (70 s) and LAP (50 s). Plus, The Ru/SPS system was capable of polymerizing a thick construct (8.88 ± 0.94 mm), while Ig2959 (1.62 ± 0.49 mm) initiated hydrogels displayed poor penetration depth with LAP (7.38 ± 2.13 mm) in between. These results thus support the use of the visible light based Ru/SPS photo-initiator for constructs requiring rapid gelation and a good curing depth while Ig2959 or LAP can be applied for photo-polymerization of GelAGE materials requiring long-term incubation prior to application if UV is not a concern.


2021 ◽  
Vol 9 (2) ◽  
pp. 105071
Author(s):  
Paraskevi Ntzoufra ◽  
John Vakros ◽  
Zacharias Frontistis ◽  
Sotirios Tsatsos ◽  
Georgios Kyriakou ◽  
...  

Author(s):  
Fabrizio Politano ◽  
Arturo León Sandoval ◽  
Mason L. Witko ◽  
Katrina E. Doherty ◽  
Chelsea M. Schroeder ◽  
...  

2020 ◽  
Author(s):  
Zeinab Ghorbani

This study aimed to investigate the efficiency of the electro-persulfate process in removing acid blue 25 from aqueous solution. In order to optimize the parameters, the OFAT method was used, and the effect of three main parameters, including pH, sodium persulfate salt concentration, and current intensity was investigated. According to the results, the optimal removal efficiency of 94% in 60 minutes was obtained under conditions of pH=5, the initial concentration of sodium persulfate=250 mg / L, and the current=500 mA. According to the results of this study, the electro-persulfate process sulfate process can be an efficient process for dye removal from industrial effluents.


2021 ◽  
Vol 233 ◽  
pp. 01111
Author(s):  
Xiangxin Lu ◽  
Wenbing Tan ◽  
Beidou Xi ◽  
Xiuyun Zhao

Due to the rapid development of the modern chemical industry, a large amount of chlorophenol pollutants remain in the environment. It poses a serious threat to the ecological environment and human health. Advanced oxidation technologies (AOPs) have the characteristics of mild reaction conditions and strong oxidation capacity, and are currently recognized as safe and effective pollutant treatment technologies. In this study, natural lead-rich biochar materials were used to activate sodium persulfate to degrade 2,4-dichlorophenol, and natural lead-rich biochar modified TiO2 photocatalytically degraded 2,4-dichlorophenol. Then, using natural lead-rich metal biochar/TiO2 material, photocatalysis combined with active sodium persulfate to degrade 2,4-dichlorophenol. The experimental results show that the combination of photocatalysis and activated sodium persulfate reaction can completely degrade 100 mg/L 2,4-dichlorophenol under UV light for 3 h, and the degradation efficiency is much higher than the sum of the two separate reactions. Quenching experiments show that SO4- • radicals play the most important role in the three free radicals (SO4- •, •OH and •O2- ) in the advanced oxidation combination system. Finally, the reaction mechanism of the two advanced oxidation combined systems are speculated.


2017 ◽  
Vol 315 ◽  
pp. 509-515 ◽  
Author(s):  
Guowen Wang ◽  
Dong Wang ◽  
Xiaoli Dong ◽  
Xiufang Zhang ◽  
Hongchao Ma

Author(s):  
Lei Wang ◽  
Tongtong Li ◽  
Hui Liu ◽  
Ningqing Lv ◽  
Beidou Xi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document