The influence of evaporation from porous concrete on air temperature and humidity

2022 ◽  
Vol 306 ◽  
pp. 114472
Author(s):  
Qiuxia Yang ◽  
Fan Dai ◽  
Simon Beecham
2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Hanifa Marisa

An investigation had been done to Tetragonula (Tetragona) sp nest at Indralaya, South Sumatra to describe the Tetragonula sp nest that use streetlight pole as nest medium during April - May 2019. Purpossive sampling is used to select the target nest. Two streetlight pole found be used by Tetragonula sp as their home. The coordinate of location, heght from ground surface, diameter of streetlight pole, air temperature and humidity, and floral species around nest, were noted. Spot coordinate are S 30 14’ 19.2498’’ and E 1040 39’ 15,3288’’ ; 1,5 m above the ground surface, 12 cm diameter pole, highest air temperature was 35 o C at daylight (April and May 2019), 80 – 90 % humidity at April-May 2019; which Switenia macrophyla, Hevea brasiliensis, Zea mays, and Citrullus lanatus floral species are planted around. Air temperature in the pole is very high, around 40 0 C during daylight.


2012 ◽  
Vol 18 (4) ◽  
pp. CR201-CR208 ◽  
Author(s):  
Jerrold S. Petrofsky ◽  
Lee Berk ◽  
Faris Alshammari ◽  
Haneul Lee ◽  
Adel Hamdan ◽  
...  

2021 ◽  
Author(s):  
Yuanfeng Cui ◽  
Leiqiu Hu ◽  
Zhihua Wang ◽  
Qi Li

Abstract The spatiotemporal characteristics of air temperature and humidity mediated by urban bluespace are investigated using a combination of dense network of climatological observations in a medium-sized US city, computational fluid dynamics and analytical modeling approaches. Both numerical simulation and observational results show that the rate of change of hourly averaged air temperature and humidity at 3.5 m over urban areas peaks two hours after sunset, while it decreases with time monotonically over greenspace, indicating different impacts due to presence of urban lakes. The apparent temperature decreases with distance to lakes in urban area due to higher near-shore humidity. This highlights that urban lakes located near city center can deteriorate the nighttime cooling effects due to elevated humidity. Finally, two analytical models are presented to explain the connection between the surface and air temperature as well as the spatial variation of air temperature and humidity adjacent to the urban lakes. These simplified models with parameters being inferred from the network of measurements have reasonably good performance compared to the observations. Compared to other sophisticated numerical simulations, these analytical models offer an alternative means that is easily accessible for evaluating the efficacy of bluespace on urban nocturnal cooling.


2018 ◽  
Vol 8 ◽  
pp. 277-281
Author(s):  
Krzysztof Lenart ◽  
Małgorzata Plechawska-Wójcik

The paper describes results of the possibility analysis of environmental monitoring and detection threats with the Arduino platform. Sensors compatible with Arduino enabling environmental monitoring were used to conduct research. The research consisted in monitoring environmental parameters, monitoring among others air temperature and humidity, sound level or gases harmful to health., Capabilities of the platform have been analyzed based on the obtained results.


Author(s):  
Peter Abdo ◽  
B. P. Huynh ◽  
Vahik Avakian

Green or living walls are active bio-filters developed to enhance air quality. Often, these walls form the base from which plants are grown; and the plant-wall system helps to remove both gaseous and particulate air pollutants. They can be classified as passive or active systems. The active systems are designed with ventilators which force air through the substrate and plant rooting system, therefore the air is purified and filtered through a bio-filtration process which also acts as a natural cooling system. Their benefits include temperature reduction, improvement of air quality and reduction of air pollution, oxygen production as well as the social and psychological wellbeing. They can produce changes in the ambient conditions (temperature and humidity) of the air layers around them which create an interesting insulation effect. The effect of green wall modules on the air temperature and on humidity is investigated in this work. A closed chamber made of acrylic sheets is used to monitor the temperature and humidity variation caused by a green wall module placed at its center. A fan positioned at the back center of the module drives air at ambient conditions and direct it into the module. Temperature and humidity are measured at different locations inside the chamber during operation for different modules with different plant species. The effect of changing the surrounding ambient conditions is also investigated.


2001 ◽  
Vol 38 (5) ◽  
pp. 629-637 ◽  
Author(s):  
Boris R. Krasnov ◽  
Irina S. Khokhlova ◽  
Laura J. Fielden ◽  
Nadezhda V. Burdelova

Sign in / Sign up

Export Citation Format

Share Document