Effect of Green Wall Modules on Air Temperature and Humidity

Author(s):  
Peter Abdo ◽  
B. P. Huynh ◽  
Vahik Avakian

Green or living walls are active bio-filters developed to enhance air quality. Often, these walls form the base from which plants are grown; and the plant-wall system helps to remove both gaseous and particulate air pollutants. They can be classified as passive or active systems. The active systems are designed with ventilators which force air through the substrate and plant rooting system, therefore the air is purified and filtered through a bio-filtration process which also acts as a natural cooling system. Their benefits include temperature reduction, improvement of air quality and reduction of air pollution, oxygen production as well as the social and psychological wellbeing. They can produce changes in the ambient conditions (temperature and humidity) of the air layers around them which create an interesting insulation effect. The effect of green wall modules on the air temperature and on humidity is investigated in this work. A closed chamber made of acrylic sheets is used to monitor the temperature and humidity variation caused by a green wall module placed at its center. A fan positioned at the back center of the module drives air at ambient conditions and direct it into the module. Temperature and humidity are measured at different locations inside the chamber during operation for different modules with different plant species. The effect of changing the surrounding ambient conditions is also investigated.

Author(s):  
Peter Abdo ◽  
B. P. Huynh

Green walls are bio-filters developed to enhance air quality. Often, these walls form the base from which plants are grown; and the plant-wall system helps to remove both gaseous and particulate air pollutants. Green walls can be found indoors or outdoors and they are classified as passive or active systems. Their benefits include temperature reduction, improvement of air quality and reduction of air pollution, oxygen production as well as the social and psychological wellbeing. They can produce changes in the ambient conditions (temperature and humidity) of the air layers around them which create an interesting insulation effect. The effect of passive green wall modules on the air temperature and on humidity is investigated in this work. A closed chamber made of acrylic sheets is used to monitor the temperature and humidity variation caused by a green wall module placed at its center. Temperature and humidity are measured at different locations inside the chamber during operation for different modules with different plant species.


Proceedings ◽  
2018 ◽  
Vol 2 (11) ◽  
pp. 633
Author(s):  
Zuzana Poorova ◽  
Mohammed Salem Alhosni ◽  
Peter Kapalo ◽  
Zuzana Vranayova

The paper is a part of ongoing doctoral study focusing on interior green walls and their qualities. The paper describes living wall built in entrance hall in the laboratory of Technical University of Košice, its construction, irrigation and vegetation; the most important segments of every living wall. The research deals with effect of green wall on air temperature and humidity in the room and compares it with air temperature and humidity in the room without green wall.


2021 ◽  
Vol 54 (2) ◽  
pp. 119-126
Author(s):  
Roman Yu. Pozhitkov

Abstract. The aim of the work is to determine the single concentrations of particulate matter in the lower layers of the atmosphere of Tobolsk. To achieve this goal, the following tasks were set: to determine the amount of PM2,5 and PM10 in various functional zones of the city; to create schemes for the quantitative distribution of suspended particles throughout the city; to localize areas with high levels of pollution for further monitoring; to analyze the influence of certain meteorological indicators (temperature and humidity air) on the content of suspended particles. The measurements were performed according to the repeatedly tested method using the AIR TESTER CW-HAT 200 device. It is established that in the lowers air layers of Tobolsk the content of PM2,5 and PM10 is low, the average geometric values are 5 and 7 ug/m3, respectively, which is significantly lower than the established maximum single concentrations for this indicator. The lowest values were found in the industrial and utility and storage zones, the highest values were found near the highway zone and in the city center, which suggests that the main source of PM2. 5 and PM10 is vehicles. Two sites with an increased level of pollution by suspended particles were localized. There were no significant correlations between PM2,5 and PM10 concentrations and air temperature and humidity.


2019 ◽  
Vol 1 (2) ◽  
Author(s):  
Hanifa Marisa

An investigation had been done to Tetragonula (Tetragona) sp nest at Indralaya, South Sumatra to describe the Tetragonula sp nest that use streetlight pole as nest medium during April - May 2019. Purpossive sampling is used to select the target nest. Two streetlight pole found be used by Tetragonula sp as their home. The coordinate of location, heght from ground surface, diameter of streetlight pole, air temperature and humidity, and floral species around nest, were noted. Spot coordinate are S 30 14’ 19.2498’’ and E 1040 39’ 15,3288’’ ; 1,5 m above the ground surface, 12 cm diameter pole, highest air temperature was 35 o C at daylight (April and May 2019), 80 – 90 % humidity at April-May 2019; which Switenia macrophyla, Hevea brasiliensis, Zea mays, and Citrullus lanatus floral species are planted around. Air temperature in the pole is very high, around 40 0 C during daylight.


Author(s):  
Nicola Palestra ◽  
Giovanna Barigozzi ◽  
Antonio Perdichizzi

The paper presents the results of an investigation on inlet air cooling systems based on cool thermal storage, applied to combined cycle power plants. Such systems provide a significant increase of electric energy production in the peak hours; the charge of the cool thermal storage is performed instead during the night time. The inlet air cooling system also allows the plant to reduce power output dependence on ambient conditions. A 127MW combined cycle power plant operating in the Italian scenario is the object of this investigation. Two different technologies for cool thermal storage have been considered: ice harvester and stratified chilled water. To evaluate the performance of the combined cycle under different operating conditions, inlet cooling systems have been simulated with an in-house developed computational code. An economical analysis has been then performed. Different plant location sites have been considered, with the purpose to weigh up the influence of climatic conditions. Finally, a parametric analysis has been carried out in order to investigate how a variation of the thermal storage size affects the combined cycle performances and the investment profitability. It was found that both cool thermal storage technologies considered perform similarly in terms of gross extra production of energy. Despite this, the ice harvester shows higher parasitic load due to chillers consumptions. Warmer climates of the plant site resulted in a greater increase in the amount of operational hours than power output augmentation; investment profitability is different as well. Results of parametric analysis showed how important the size of inlet cooling storage may be for economical results.


Sign in / Sign up

Export Citation Format

Share Document