Discrimination of type 2 diabetes mellitus corresponding to different traditional Chinese medicine syndromes based on plasma fatty acid profiles and chemometric methods

2012 ◽  
Vol 143 (2) ◽  
pp. 463-468 ◽  
Author(s):  
Wenjuan Xu ◽  
Liangxiao Zhang ◽  
Yuhong Huang ◽  
Qianxu Yang ◽  
Hongbin Xiao ◽  
...  
Medicine ◽  
2020 ◽  
Vol 99 (30) ◽  
pp. e21091
Author(s):  
Hui Wang ◽  
Jun Zhang ◽  
Chun-fang Shi ◽  
Jing Jia ◽  
Zhi-min Zhang ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-21 ◽  
Author(s):  
Beida Ren ◽  
Ling Tan ◽  
Yiliang Xiong ◽  
Wenting Ji ◽  
Jie Mu ◽  
...  

Background. The incidence of type 2 diabetes mellitus (T2DM) has increased year by year, which not only seriously affects people’s quality of life, but also imposes a heavy economic burden on the family, society, and country. Currently, the pathogenesis, diagnosis, and treatment of T2DM are still unclear. Therefore, exploration of a precise multitarget treatment strategy is urgent. Here, we attempt to screen out the active components, effective targets, and functional pathways of therapeutic drugs through network pharmacology with taking advantages of traditional Chinese medicine (TCM) formulas for multitarget holistic treatment of diseases to clarify the potential therapeutic mechanism of TCM formulas and provide a systematic and clear thought for T2DM treatment. Methods. First, we screened the active components of Da-Chai-Hu Decoction (DCHD) by absorption, distribution, metabolism, excretion, and toxicity (ADME/T) calculation. Second, we predicted and screened the active components of DCHD and its therapeutic targets for T2DM relying on the Traditional Chinese Medicine Systems Pharmacology Analysis Platform (TCMSP database) and Text Mining Tool (GoPubMed database), while using the Database for Annotation, Visualization, and Integrated Discovery (DAVID) to obtain T2DM targets. Third, we constructed a network of the active component-target, target-pathway of DCHD using Cytoscape software (http://cytoscape.org/,ver.3.5.1) and then analyzed gene function, related biological processes, and signal pathways through the DAVID database. Results. We screened 77 active components from 1278 DCHD components and 116 effective targets from 253 ones. After matching the targets of T2DM, we obtained 38 important targets and 7 core targets were selected through further analysis. Through enrichment analysis, we found that these important targets were mainly involved in many biological processes such as oxidative stress, inflammatory reaction, and apoptosis. After analyzing the relevant pathways, the synthetic pathway for the treatment of T2DM was obtained, which provided a diagnosis-treatment idea for DCHD in the treatment of T2DM. Conclusions. This article reveals the mechanism of DCHD in the treatment of T2DM related to inflammatory response and apoptosis through network pharmacology, which lays a foundation for further elucidation of drugs effective targets.


FEBS Letters ◽  
2006 ◽  
Vol 580 (30) ◽  
pp. 6837-6845 ◽  
Author(s):  
Lun-Zhao Yi ◽  
Jun He ◽  
Yi-Zeng Liang ◽  
Da-Lin Yuan ◽  
Foo-Tim Chau

2021 ◽  
pp. 1-11
Author(s):  
Yi-Zhen Wang ◽  
Lei Meng ◽  
Qi-Shuai Zhuang ◽  
Liang Shen

Background: In recent years, the efficacy of type 2 diabetes mellitus (T2DM) drugs in the treatment of Alzheimer’s disease (AD) has attracted extensive interest owing to the close associations between the two diseases. Objective: Here, we screened traditional Chinese medicine (TCM) and multi-target ingredients that may have potential therapeutic effects on both T2DM and AD from T2DM prescriptions. Methods: Network pharmacology and molecular docking were used. Results: Firstly, the top 10 frequently used herbs and corresponding 275 active ingredients were identified from 263 T2DM-related TCM prescriptions. Secondly, through the comparative analysis of 208 potential targets of ingredients, 1,740 T2DM-related targets, and 2,060 AD-related targets, 61 common targets were identified to be shared. Thirdly, by constructing pharmacological network, 26 key targets and 154 representative ingredients were identified. Further enrichment analysis showed that common targets were involved in regulating multiple pathways related to T2DM and AD, while network analysis also found that the combination of Danshen (Radix Salviae)-Gancao (Licorice)-Shanyao (Rhizoma Dioscoreae) contained the vast majority of the representative ingredients and might be potential for the cotreatment of the two diseases. Fourthly, MAPK1, PPARG, GSK3B, BACE1, and NR3C1 were selected as potential targets for virtual screening of multi-target ingredients. Further docking studies showed that multiple natural compounds, including salvianolic acid J, gancaonin H, gadelaidic acid, icos-5-enoic acid, and sigmoidin-B, exhibited high binding affinities with the five targets. Conclusion: To summarize, the present study provides a potential TCM combination that might possess the potential advantage of cotreatment of AD and T2DM.


Sign in / Sign up

Export Citation Format

Share Document