metabolomics study
Recently Published Documents


TOTAL DOCUMENTS

546
(FIVE YEARS 260)

H-INDEX

35
(FIVE YEARS 7)

2022 ◽  
Author(s):  
Xing Li ◽  
Lingpu Zhang ◽  
Tuo Li ◽  
Shumu Li ◽  
Wenjing Wu ◽  
...  

Abstract Background: Cisplatin is the most common antitumor alkylating agent of platinum(II) (Pt(II)) in clinic, however it had many side effects. It is necessary to develop low toxicity platinum(IV) (Pt(IV)) drugs. Multi-omics was frequently used to help one understand the mechanism of a certain therapy at the molecular level. Little was known about the mechanism of Pt(IV) drugs, which may be benifical for clinical translation. Methods: We developed a Pt(IV) drug of cisplatin with two hydrophobic aliphatic chains and further encapsulated it with a drug carrier human serum albumin (HSA) to prepare Abplatin(IV). Transcriptomics, metabolomics and lipidomics were performed to clarify the mechanism of Pt(IV) drugs. T-test assay and fold change were used to find the differential substances.Results: We had further shown Abplatin(IV) had better tumor-targeting performance and greater tumor inhibtion rate than cisplatin. Lipidomics study showed that Abplatin(IV) might induce the changes of BEL-7404 cell membrane, and caused the disorder of glycerophospholipids and sphingolipids. In addition, transcriptomics and metabolomics study showed that Abplatin(IV) mainly disturbed more significant purine metabolism pathway than cisplatin.Conclusions: This research highlighted the development of Abplatin(IV) and the use of multi-omics to help one understand the mechanism of action of prodrugs and their DDS, which was the key to the clinical translation of them.


2022 ◽  
Vol 8 (1) ◽  
pp. 55
Author(s):  
Pierluigi Reveglia ◽  
Maria Luisa Raimondo ◽  
Marco Masi ◽  
Alessio Cimmino ◽  
Genoveffa Nuzzo ◽  
...  

Grapevine (Vitis vinifera L.) can be affected by many different biotic agents, including tracheomycotic fungi such as Phaeomoniella chlamydospora and Phaeoacremonium minimum, which are the main causal agent of Esca and Petri diseases. Both fungi produce phytotoxic naphthalenone polyketides, namely scytalone and isosclerone, that are related to symptom development. The main objective of this study was to investigate the secondary metabolites produced by three Phaeoacremonium species and to assess their phytotoxicity by in vitro bioassay. To this aim, untargeted and targeted LC-MS/MS-based metabolomics were performed. High resolution mass spectrometer UHPLC-Orbitrap was used for the untargeted profiling and dereplication of secondary metabolites. A sensitive multi reaction monitoring (MRM) method for the absolute quantification of scytalone and isosclerone was developed on a UPLC-QTrap. Different isolates of P. italicum, P. alvesii and P. rubrigenum were grown in vitro and the culture filtrates and organic extracts were assayed for phytotoxicity. The toxic effects varied within and among fungal isolates. Isosclerone and scytalone were dereplicated by matching retention times and HRMS and MS/MS data with pure standards. The amount of scytalone and isosclerone differed within and among fungal species. To our best knowledge, this is the first study that applies an approach of LC-MS/MS-based metabolomics to investigate differences in the metabolic composition of organic extracts of Phaeoacremonium species culture filtrates.


2022 ◽  
pp. 132129
Author(s):  
Qing-Qing Cao ◽  
Yan-Qing Fu ◽  
Yu-Yi Liu ◽  
Yumei Qin ◽  
Jian-Xin Chen ◽  
...  

Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7681
Author(s):  
Li Li ◽  
Jianbei Teng ◽  
Yilin Zhu ◽  
Fengfeng Xie ◽  
Jing Hou ◽  
...  

The goal of this study was to identify and compare the main biomarkers of Taxillus chinensis from different hosts. A metabolomics approach utilizing ultra-pressure liquid chromatography coupled with tandem mass spectrometry (UPLC-MS), including cluster analysis, sample correlation analysis and orthogonal partial least squares discriminant analysis, was used to explore the flavonoid metabolites of Taxillus chinensis growing on different hosts. Results: The total flavonoids content (up to 30.08 mg/g) in Taxillus chinensis from Morus alba (CSG) was significantly higher than that from growth on Liquidambar formosana (CFG) or Clausena lansium (CHG) (p < 0.01). There were 23 different metabolites between CSG and CHG, 23 different metabolites between CSG and CFG, and 19 different metabolites between CHG and CFG. The results demonstrated that different hosts exerted a large influence on the metabolites of Taxillus chinensis; it was found that CSG differed from CFG and CHG in eleven metabolic compounds, ten of which were upregulated and one of which was downregulated. Most of these metabolites derive from compounds contained in the host plant, white mulberry (Morus alba); many feature potent anti-cancer effects. Differences in host can influence the type and abundance of flavonoids in parasitic plants such as Taxillus chinensis, which is of great significance to researchers seeking to understand the formation mechanism of Taxillus chinensis metabolites. Therefore, attention should be paid to the species of host plant when studying the Taxillus chinensis metabolome. Plants grown on Morus alba offer the greatest potential for the development of new anti-cancer drugs.


Molecules ◽  
2021 ◽  
Vol 26 (24) ◽  
pp. 7416
Author(s):  
Ankhbayar Lkhagva ◽  
Hwan-Ching Tai

Metabolomics profiling using liquid chromatography-mass spectrometry (LC-MS) has become an important tool in biomedical research. However, resolving enantiomers still represents a significant challenge in the metabolomics study of complex samples. Here, we introduced N,N-dimethyl-l-cysteine (dimethylcysteine, DiCys), a chiral thiol, for the o-phthalaldehyde (OPA) derivatization of enantiomeric amine metabolites. We took interest in DiCys because of its potential for multiplex isotope-tagged quantification. Here, we characterized the usefulness of DiCys in reversed-phase LC-MS analyses of chiral metabolites, compared against five commonly used chiral thiols: N-acetyl-l-cysteine (NAC); N-acetyl-d-penicillamine (NAP); isobutyryl-l-cysteine (IBLC); N-(tert-butoxycarbonyl)-l-cysteine methyl ester (NBC); and N-(tert-butylthiocarbamoyl)-l-cysteine ethyl ester (BTCC). DiCys and IBLC showed the best overall performance in terms of chiral separation, fluorescence intensity, and ionization efficiency. For chiral separation of amino acids, DiCys/OPA also outperformed Marfey’s reagents: 1-fluoro-2-4-dinitrophenyl-5-l-valine amide (FDVA) and 1-fluoro-2-4-dinitrophenyl-5-l-alanine amide (FDAA). As proof of principle, we compared DiCys and IBLC for detecting chiral metabolites in aqueous extracts of rice. By LC–MS analyses, both methods detected twenty proteinogenic l-amino acids and seven d-amino acids (Ala, Arg, Lys, Phe, Ser, Tyr, and Val), but DiCys showed better analyte separation. We conclude that DiCys/OPA is an excellent amine-derivatization method for enantiomeric metabolite detection in LC-MS analyses.


2021 ◽  
Vol 8 ◽  
Author(s):  
Karen Resendiz-Acevedo ◽  
Martha E. García-Aguilera ◽  
Nuria Esturau-Escofet ◽  
Lena Ruiz-Azuara

The knowledge of the metabolic processes of designed metallodrugs for cancer treatment is an area that has been not profoundly studied. Casiopeina IIgly (CasIIgly), which belongs to the Casiopeínas® family, is a copper (II) coordination compound that has shown good biological activity against several cancer cells, low toxicity in normal cells, and antineoplastic activity in in vivo murine and xenografted models. In this work we employed a triple-negative highly metastatic breast carcinoma line (MDA-MB-231), which is one of the cancer types with a great mortality index, for 1H-NMR metabolomic analysis using cisplatin and CasIIgly, in order to quantify the effect of metallodrugs in the metabolic profile of this cell tumor line as a consequence of treatment at different times. Our findings indicate that cisplatin mainly contributes to phospholipid biosynthesis while CasIIgly affects processes such as carbohydrates and nucleotides metabolism. Also, we observed that CasIIgly treatment has an important and fast effect over MDA-MB-231 cell metabolism, which makes it a good alternative for treatment in this type of cancer.


2021 ◽  
Vol Volume 16 ◽  
pp. 2111-2123
Author(s):  
Cong Zhang ◽  
Qingna Yan ◽  
Qiushuang Zhu ◽  
Jinxiao Liu ◽  
Yuanjie Dong ◽  
...  

Metabolites ◽  
2021 ◽  
Vol 11 (12) ◽  
pp. 820
Author(s):  
Kekeletso H. Chele ◽  
Paul Steenkamp ◽  
Lizelle A. Piater ◽  
Ian A. Dubery ◽  
Johan Huyser ◽  
...  

The ongoing unpredictability of climate changes is exponentially exerting a negative impact on crop production, further aggravating detrimental abiotic stress effects. Several research studies have been focused on the genetic modification of crop plants to achieve more crop resilience against such stress factors; however, there has been a paradigm shift in modern agriculture focusing on more organic, eco-friendly and long-lasting systems to improve crop yield. As such, extensive research into the use of microbial and nonmicrobial biostimulants has been at the core of agricultural studies to improve crop growth and development, as well as to attain tolerance against several biotic and abiotic stresses. However, the molecular mechanisms underlying the biostimulant activity remain enigmatic. Thus, this study is a liquid chromatography-mass spectrometry (LC-MS)-based untargeted metabolomics approach to unravel the hypothetical biochemical framework underlying effects of a nonmicrobial biostimulant (a silicon-based formulation) on tomato plants (Solanum lycopersium) under salinity stress conditions. This metabolomics study postulates that Si-based biostimulants could alleviate salinity stress in tomato plants through modulation of the primary metabolism involving changes in the tricarboxylic acid cycle, fatty acid and numerous amino acid biosynthesis pathways, with further reprogramming of several secondary metabolism pathways such as the phenylpropanoid pathway, flavonoid biosynthesis pathways including flavone and flavanol biosynthesis. Thus, the postulated hypothetical framework, describing biostimulant-induced metabolic events in tomato plants, provides actionable knowledge necessary for industries and farmers to, confidently and innovatively, explore, design, and fully implement Si-based formulations and strategies into agronomic practices for sustainable agriculture and food production.


Sign in / Sign up

Export Citation Format

Share Document