Study on the mechanism of copper–ammonia complex decomposition in struvite formation process and enhanced ammonia and copper removal

2017 ◽  
Vol 51 ◽  
pp. 222-233 ◽  
Author(s):  
Cong Peng ◽  
Liyuan Chai ◽  
Chongjian Tang ◽  
Xiaobo Min ◽  
Yuxia Song ◽  
...  
Minerals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 905
Author(s):  
Sebastián Sepúlveda ◽  
Carla Duarte-Nass ◽  
Mariella Rivas ◽  
Laura Azócar ◽  
Andrés Ramírez ◽  
...  

This research focused on the evaluation of the potential use of a soil-isolated bacteria, identified as Staphylococcus equorum, for microbial-induced calcite precipitation (MICP) and copper removal. Isolated bacteria were characterized considering growth rate, urease activity, calcium carbonate precipitation, copper tolerance as minimum inhibitory concentration (MIC) and copper precipitation. Results were compared with Sporosarcina pasteurii, which is considered a model bacteria strain for MICP processes. The results indicated that the S. equorum strain had lower urease activity, calcium removal capacity and copper tolerance than the S. pasteurii strain. However, the culture conditions tested in this study did not consider the halophilic feature of the S. equorum, which could make it a promising bacterial strain to be applied in process water from mining operations when seawater is used as process water. On the other hand, copper removal was insufficient when applying any of the bacteria strains evaluated, most likely due to the formation of a copper–ammonia complex. Thus, the implementation of S. equorum for copper removal needs to be further studied, considering the optimization of culture conditions, which may promote better performance when considering calcium, copper or other metals precipitation.


2017 ◽  
Vol 27 (2) ◽  
pp. 457-466 ◽  
Author(s):  
Li-yuan CHAI ◽  
Cong PENG ◽  
Xiao-bo MIN ◽  
Chong-jian TANG ◽  
Yu-xia SONG ◽  
...  

Author(s):  
Masaru Itakura ◽  
Noriyuki Kuwano ◽  
Kensuke Oki

The low temperature phase of Pd5Ce (L-Pd5Ce) has a one-dimensional long period superstructure (1D-LPS) derived from Ll2. The periodic antiphase boundaries (APBs) are parallel to (110) planes and have a shift vector of 1/2[110]. Hereafter, the indices are referred to the basic lattices of Ll2 As insertion of the APB causes a change in composition, such an APB is called “non-conservative”. Then, a domain size M depends upon the Ce concentration in the alloy. It was found that M increases also with temperature. The temperature dependency of M is attributed to a change of the degree of order within the antiphase domains. In this work, morphology of the non-conservative APBs is observed to clarify the formation process of the 1D-LPS.The alloy of Pd-16.7 at%Ce was prepared by arc melting in argon atmosphere. Disc specimens made from the alloy ingot were first held at 985 K for 260 ks and quenched in iced water to obtain the state of M=∞ or Ll2, followed by annealing for various lengths of time. The annealing temperature was 873 K where the equilibrium value for M is about 3 in unit of (110) lattice spacing of Ll2. Observation was carried out using microscopes JEM-2000FX, JEM-4000EX (HVEM Lab., Kyushu Univ.) and JEM-2000EX (Dept. of Mater. Sci. Tech., Kyushu Univ.).


2004 ◽  
Author(s):  
Julia Braverman ◽  
David DeSteno
Keyword(s):  

2019 ◽  
Vol 41 (4) ◽  
pp. 230-239
Author(s):  
L.F. Kosyanchuk ◽  
◽  
O.I. Antonenko ◽  
T.D. Ignatova ◽  
N.V. Babkina ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document