scholarly journals Dynamics of bacterial communities during a seasonal hypoxia at the Bohai Sea: Coupling and response between abundant and rare populations

2022 ◽  
Vol 111 ◽  
pp. 324-339
Author(s):  
Chao Wu ◽  
Jinjun Kan ◽  
Dhiraj Dhondiram Narale ◽  
Kun Liu ◽  
Jun Sun
2019 ◽  
Vol 58 (4) ◽  
pp. 903-917 ◽  
Author(s):  
Manman Ma ◽  
Yu Zhen ◽  
Tiezhu Mi

AbstractStudies of the community structures of bacteria in marine aerosols of different particle sizes have not been reported. Aerosol samples were collected using a six-stage bioaerosol sampler over the Bohai Sea, the Yellow Sea, and northwestern Pacific Ocean in the spring of 2014. The diversity and composition of these samples were investigated by Illumina high-throughput sequencing, and 130 genera were detected in all of the samples; the most abundant bacterial genus was Bacteroides, followed by Prevotella and Megamonas. The Chao1 and Shannon diversity indices ranged from 193 to 1044 and from 5.44 to 8.33, respectively. The bacterial community structure in coarse particles (diameter larger than 2.1 μm) was more complex and diverse than that in fine particles (diameter less than 2.1 μm) in marine bioaerosols from over the Yellow Sea and northwestern Pacific Ocean, while the opposite trend was observed for samples collected over the Bohai Sea. Although we were sampling over marine regions, the sources of the bioaerosols were mostly continental. Temperature and wind speed significantly influenced the bacterial communities in marine aerosols of different particle sizes. There may be a bacterial background in the atmosphere in the form of several dominant taxa, and the bacterial communities are likely mixed constantly during transmission.


2015 ◽  
Vol 538 ◽  
pp. 117-130 ◽  
Author(s):  
FL Yang ◽  
JS Yang ◽  
CP Deng ◽  
N Chen ◽  
SQ Wang ◽  
...  

2018 ◽  
Vol 25 (2) ◽  
pp. 229
Author(s):  
Zhongyi LI ◽  
Qiang WU ◽  
Xiujuan SHAN ◽  
Tao YANG ◽  
Fangqun DAI ◽  
...  

2012 ◽  
Vol 47 (2) ◽  
pp. 125-132 ◽  
Author(s):  
Wang Yan ◽  
Huang Lin ◽  
Gu Haifeng ◽  
Li Shuang ◽  
Li Shaoshan

Water ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 1509
Author(s):  
Yuanyi Li ◽  
Huan Feng ◽  
Guillaume Vigouroux ◽  
Dekui Yuan ◽  
Guangyu Zhang ◽  
...  

A storm surge is a complex phenomenon in which waves, tide and current interact. Even though wind is the predominant force driving the surge, waves and tidal phase are also important factors that influence the mass and momentum transport during the surge. Devastating storm surges often occur in the Bohai Sea, a semi-enclosed shallow sea in North China, due to extreme storms. However, the effects of waves on storm surges in the Bohai Sea have not been quantified and the mechanisms responsible for the higher surges that affect part of the Bohai Sea have not been thoroughly studied. In this study, we set up a storm surge model, considering coupled effects of tides and waves on the surges. Validation against measured data shows that the coupled model is capable of simulating storm surges in the Bohai Sea. The simulation results indicate that the longshore currents, which are induced by the large gradient of radiation stress due to wave deformation, are one of the main contributors to the higher surges occurring in some coastal regions. The gently varying bathymetry is another factor contributing to these surges. With such bathymetry, the wave force direction is nearly uniform, and pushes a large amount of water in that direction. Under these conditions, the water accumulates in some parts of the coast, leading to higher surges in nearby coastal regions such as the south coast of the Bohai Bay and the west and south coasts of the Laizhou Bay. Results analysis also shows that the tidal phase at which the surge occurs influences the wave–current interactions, and these interactions are more evident in shallow waters. Neglecting these interactions can lead to inaccurate predictions of the storm surges due to overestimation or underestimation of wave-induced set-up.


Harmful Algae ◽  
2021 ◽  
Vol 106 ◽  
pp. 102066
Author(s):  
Hailong Huang ◽  
Qing Xu ◽  
Kate Gibson ◽  
Yang Chen ◽  
Nansheng Chen

2019 ◽  
Vol 16 (22) ◽  
pp. 4485-4496 ◽  
Author(s):  
Ye Tian ◽  
Chao Xue ◽  
Chun-Ying Liu ◽  
Gui-Peng Yang ◽  
Pei-Feng Li ◽  
...  

Abstract. Nitric oxide (NO) is a short-lived compound of the marine nitrogen cycle; however, our knowledge about its oceanic distribution and turnover is rudimentary. Here we present the measurements of dissolved NO in the surface and bottom layers at 75 stations in the Bohai Sea (BS) and the Yellow Sea (YS) in June 2011. Moreover, NO photoproduction rates were determined at 27 stations in both seas. The NO concentrations in the surface and bottom layers were highly variable and ranged from below the limit of detection (i.e., 32 pmol L−1) to 616 pmol L−1 in the surface layer and 482 pmol L−1 in the bottom layer. There was no significant difference (p>0.05) between the mean NO concentrations in the surface (186±108 pmol L−1) and bottom (174±123 pmol L−1) layers. A decreasing trend of NO in bottom-layer concentrations with salinity indicates a NO input by submarine groundwater discharge. NO in the surface layer was supersaturated at all stations during both day and night and therefore the BS and YS were a persistent source of NO to the atmosphere at the time of our measurements. The average flux was about 4.5×10-16 mol cm−2 s−1 and the flux showed significant positive relationship with the wind speed. The accumulation of NO during daytime was a result of photochemical production, and photoproduction rates were correlated to illuminance. The persistent nighttime NO supersaturation pointed to an unidentified NO dark production. NO sea-to-air flux densities were much lower than the NO photoproduction rates. Therefore, we conclude that the bulk of the NO produced in the mixed layer was rapidly consumed before its release to the atmosphere.


Sign in / Sign up

Export Citation Format

Share Document