Seasonal variation of transport pathways and potential source areas at high inorganic nitrogen wet deposition sites in southern China

Author(s):  
Shuidi He ◽  
Minjuan Huang ◽  
Lianming Zheng ◽  
Ming Chang ◽  
Weihua Chen ◽  
...  
Atmosphere ◽  
2020 ◽  
Vol 11 (11) ◽  
pp. 1183
Author(s):  
Hanlin Li ◽  
Qing He ◽  
Xinchun Liu

Cluster analyses, potential source contribution function (PSCF) and concentration-weight trajectory (CWT) were used to identify the main transport pathways and potential source regions with hourly PM2.5 and PM10 concentrations in different seasons from January 2017 to December 2019 at Akedala Station, located in northwest China (Central Asia). The annual mean concentrations of PM2.5 and PM10 were 11.63 ± 9.31 and 19.99 ± 14.39 µg/m3, respectively. The air pollution was most polluted in winter, and the dominant part of PM10 (between 54 to 76%) constituted PM2.5 aerosols in Akedala. Particulate pollution in Akedala can be traced back to eastern Kazakhstan, northern Xinjiang, and western Mongolia. The cluster analyses showed that the Akedala atmosphere was mainly affected by air masses transported from the northwest. The PM2.5 and PM10 mainly came with air masses from the central and eastern regions of Kazakhstan, which are characterized by highly industrialized and semi-arid desert areas. In addition, the analyses of the pressure profile of back-trajectories showed that air mass distribution were mainly distributed above 840 hPa. This indicates that PM2.5 and PM10 concentrations were strongly affected by high altitude air masses. According to the results of the PSCF and CWT methods, the main potential source areas of PM2.5 were very similar to those of PM10. In winter and autumn, the main potential source areas with high weighted PSCF values were located in the eastern regions of Kazakhstan, northern Xinjiang, and western Mongolia. These areas contributed the highest PM2.5 concentrations from 25 to 40 µg/m3 and PM10 concentrations from 30 to 60 µg/m3 in these seasons. In spring and summer, the potential source areas with the high weighted PSCF values were distributed in eastern Kazakhstan, northern Xinjiang, the border between northeast Kazakhstan, and southern Russia. These areas contributed the highest PM2.5 concentrations from 10 to 20 µg/m3 and PM10 concentrations from 20 to 60 µg/m3 in these seasons.


2021 ◽  
Vol 250 ◽  
pp. 105414
Author(s):  
Subash Adhikari ◽  
Fan Zhang ◽  
Namita Paudel Adhikari ◽  
Chen Zeng ◽  
Ramesh Raj Pant ◽  
...  

Geologos ◽  
2016 ◽  
Vol 22 (2) ◽  
pp. 87-103 ◽  
Author(s):  
Massimo Moretti ◽  
Marcello Tropeano ◽  
A.J. (Tom) van Loon ◽  
Pasquale Acquafredda ◽  
Rossella Baldacconi ◽  
...  

Abstract Beach sands from the Rosa Marina locality (Adriatic coast, southern Italy) were analysed mainly microscopically in order to trace the source areas of their lithoclastic and bioclastic components. The main cropping out sedimentary units were also studied with the objective to identify the potential source areas of lithoclasts. This allowed to establish how the various rock units contribute to the formation of beach sands. The analysis of the bioclastic components allows to estimate the actual role of organisms regarding the supply of this material to the beach. Identification of taxa that are present in the beach sands as shell fragments or other remains was carried out at the genus or family level. Ecological investigation of the same beach and the recognition of sub-environments (mainly distinguished on the basis of the nature of the substrate and of the water depth) was the key topic that allowed to establish the actual source areas of bioclasts in the Rosa Marina beach sands. The sedimentological analysis (including a physical study of the beach and the calculation of some statistical parameters concerning the grain-size curves) shows that the Rosa Marina beach is nowadays subject to erosion.


2011 ◽  
Vol 11 (3) ◽  
pp. 819-828 ◽  
Author(s):  
M. Jaboyedoff ◽  
V. Labiouse

Abstract. Rockfall propagation areas can be determined using a simple geometric rule known as shadow angle or energy line method based on a simple Coulomb frictional model implemented in the CONEFALL computer program. Runout zones are estimated from a digital terrain model (DTM) and a grid file containing the cells representing rockfall potential source areas. The cells of the DTM that are lowest in altitude and located within a cone centered on a rockfall source cell belong to the potential propagation area associated with that grid cell. In addition, the CONEFALL method allows estimation of mean and maximum velocities and energies of blocks in the rockfall propagation areas. Previous studies indicate that the slope angle cone ranges from 27° to 37° depending on the assumptions made, i.e. slope morphology, probability of reaching a point, maximum run-out, field observations. Different solutions based on previous work and an example of an actual rockfall event are presented here.


2018 ◽  
Vol 243 ◽  
pp. 1740-1749 ◽  
Author(s):  
Xiaojuan Huang ◽  
Junke Zhang ◽  
Bin Luo ◽  
Lili Wang ◽  
Guiqian Tang ◽  
...  

2021 ◽  
Author(s):  
Janina J. (Bösken) Nett ◽  
Frank Lehmkuhl ◽  
Erik J. Schaffernicht ◽  
Stephan Pötter ◽  
Philipp Schulte ◽  
...  

<p>Loess is an important archive of environmental change covering approximately 10% of the Earth’s terrestrial surface. Numerous studies have analyzed loess deposits and in particular loess-paleosol sequences. To analyze these sequences, it is important to know the spatial distribution of aeolian sediments, their location relative to potential source areas, and the geomorphology of the sink area. We investigated these aspects by compiling a new map of aeolian sediments in Europe using highly resolved geodata from 27 countries (Lehmkuhl et al., in press). To determine the most relevant factors for the European loess distribution, we further mapped potential source areas and divided the map into different facies domains. We analyzed the geomorphological and paleoenvironmental effects on the deposition and preservation of Late Pleistocene loess. Finally, the geodata-based results were compared with results obtained from high-resolved regional numerical climate-dust experiments for the Last Glacial Maximum (LGM) in Europe, which were performed with the LGM-adapted Weather Research and Forecasting model coupled with Chemistry (WRF-Chem-LGM; Schaffernicht et al., 2020).  Complementing the mapping-based findings with the WRF-Chem-LGM experiments results in an improved understanding of the Late Pleistocene loess landscape in Europe.</p><p> </p><p>References:</p><p>Lehmkuhl, F., Nett, J.J., Pötter, S., Schulte, P., Sprafke, T., Jary, Z., Antoine, P., Wacha, L., Wolf, D., Zerboni, A., Hošek, J., Marković, S.B., Obreht, I., Sümegi, P., Veres, D., Zeeden, C., Boemke, B., Schaubert, V., Viehweger, J., Hambach, U. (in press). Loess landscapes of Europe – Mapping, geomorphology, and zonal differentiation. Earth-Science Reviews. Doi: https://doi.org/10.1016/j.earscirev.2020.103496</p><p>Schaffernicht, E.J., Ludwig, P., Shao, Y., 2020. Linkage between dust cycle and loess of the last Glacial Maximum in Europe. Atmospheric Chemistry and Physics 20, 4969–4986. Doi:10.5194/acp-20-4969-2020.</p>


1995 ◽  
Vol 127 (1) ◽  
pp. 79-91 ◽  
Author(s):  
Kelli Hoover ◽  
David L. Wood ◽  
Joseph W. Fox ◽  
William E. Bros

AbstractThe objective of this study was to determine the quantitative and seasonal association between the pitch canker fungus, Fusarium subglutinans f. sp. pini, and two potential beetle vectors, Conophthorus radiatae Hopkins and Ernobius punctulatus Fall. In samples of reared and dissected cones, 21.4 ± 2.5% of C. radiatae and 30.1 ± 8.0% of E. punctulatus adults carried propagules of F. s. pini. Seasonal variation in mean percentage of contaminated C. radiatae and E. punctulatus emerged from cones ranged from 0 to 67% and was highest for both species February through April. In sticky traps 12.5 ± 2.3% and 11.8 ± 3.6% of E. punctulatus and Pityophthorus spp., respectively, were contaminated with propagules of F. s. pini.Conophthorus radiatae and E. punctulatus co-occurred in 26% of the cones. The percentage of cones containing contaminated C. radiatae was greater when E. punctulatus progeny were also contaminated than when E. punctulatus was not. When contamination status of E. punctulatus was not considered, there was no significant difference in C. radiatae contamination between cones with and without E. punctulatus. Because C. radiatae appears to be a vector of the pitch canker fungus, interspecific transmission of inoculum may increase the incidence of this disease.The parasitoid, Cephalonomia utahensis Brues (Hymenoptera: Bethylidae), was frequently observed parasitizing late-instar larvae of E. punctulatus, but was not found on larvae of C. radiatae. Emergence of large numbers of C. utahensis represents another potential source of inoculum for transmission to prey species.


2015 ◽  
Vol 204 ◽  
pp. 1-8 ◽  
Author(s):  
X. Zhan ◽  
G. Yu ◽  
N. He ◽  
B. Jia ◽  
M. Zhou ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document