Dilatometric study of anisotropic sintering of alumina/zirconia laminates with controlled fracture behaviour

2017 ◽  
Vol 37 (14) ◽  
pp. 4287-4295 ◽  
Author(s):  
Karel Maca ◽  
Vaclav Pouchly ◽  
Daniel Drdlik ◽  
Hynek Hadraba ◽  
Zdenek Chlup
2020 ◽  
Vol 21 (6) ◽  
pp. 610
Author(s):  
Xiaoliang Cheng ◽  
Chunyang Zhao ◽  
Hailong Wang ◽  
Yang Wang ◽  
Zhenlong Wang

Microwave cutting glass and ceramics based on thermal controlled fracture method has gained much attention recently for its advantages in lower energy-consumption and higher efficiency than conventional processing method. However, the irregular crack-propagation is problematic in this procedure, which hinders the industrial application of this advanced technology. In this study, the irregular crack-propagation is summarized as the unstable propagation in the initial stage, the deviated propagation in the middle stage, and the non-penetrating propagation in the end segment based on experimental work. Method for predicting the unstable propagation in the initial stage has been developed by combining analytical models with thermal-fracture simulation. Experimental results show good agreement with the prediction results, and the relative deviation between them can be <5% in cutting of some ceramics. The mechanism of deviated propagation and the non-penetrating propagation have been revealed by simulation and theoretical analysis. Since this study provides effective methods to predict unstable crack-propagation in the initial stage and understand the irregular propagation mechanism in the whole crack-propagation stage in microwave cutting ceramics, it is of great significance to the industrial application of thermal controlled fracture method for cutting ceramic materials using microwave.


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1099
Author(s):  
Qingqing Chen ◽  
Yuhang Zhang ◽  
Tingting Zhao ◽  
Zhiyong Wang ◽  
Zhihua Wang

The mechanical properties and fracture behaviour of concretes under different triaxial stress states were investigated based on a 3D mesoscale model. The quasistatic triaxial loadings, namely, compression–compression–compression (C–C–C), compression–tension–tension (C–T–T) and compression–compression–tension (C–C–T), were simulated using an implicit solver. The mesoscopic modelling with good robustness gave reliable and detailed damage evolution processes under different triaxial stress states. The lateral tensile stress significantly influenced the multiaxial mechanical behaviour of the concretes, accelerating the concrete failure. With low lateral pressures or tensile stress, axial cleavage was the main failure mode of the specimens. Furthermore, the concretes presented shear failures under medium lateral pressures. The concretes experienced a transition from brittle fracture to plastic failure under high lateral pressures. The Ottosen parameters were modified by the gradient descent method and then the failure criterion of the concretes in the principal stress space was given. The failure criterion could describe the strength characteristics of concrete materials well by being fitted with experimental data under different triaxial stress states.


1981 ◽  
Vol 67 (2) ◽  
pp. 693-699 ◽  
Author(s):  
Y. Uesu ◽  
J. Ogawa ◽  
N. Hanami ◽  
B. A. Strukov ◽  
J. Kobayashi

2017 ◽  
Vol 490 ◽  
pp. 143-154 ◽  
Author(s):  
Anna Hojna ◽  
Fosca Di Gabriele ◽  
Hynek Hadraba ◽  
Roman Husak ◽  
Ivo Kubena ◽  
...  

1979 ◽  
Vol 1 (4) ◽  
pp. 277-280 ◽  
Author(s):  
Anne B. Owen ◽  
Peter W.R. Beaumont

Sign in / Sign up

Export Citation Format

Share Document