Phenolic compounds stage an interplay between the ubiquitin–proteasome system and ubiquitin signal autophagic degradation for the ubiquitin-based cancer chemoprevention

2015 ◽  
Vol 17 ◽  
pp. 857-871 ◽  
Author(s):  
Tsui-Ling Chang ◽  
Hung-Yu Chiang ◽  
Jia-Yi Shen ◽  
Shu-Wei Lin ◽  
Pei-Jane Tsai
2019 ◽  
Vol 167 ◽  
pp. 291-311 ◽  
Author(s):  
Aleksandra Golonko ◽  
Tomasz Pienkowski ◽  
Renata Swislocka ◽  
Ryszard Lazny ◽  
Marek Roszko ◽  
...  

2015 ◽  
Vol 35 (16) ◽  
pp. 2740-2751 ◽  
Author(s):  
Yi-Sheng Hou ◽  
Jun-Jie Guan ◽  
Hai-Dong Xu ◽  
Feng Wu ◽  
Rui Sheng ◽  
...  

Dysfunction of the autophagy-lysosomal pathway (ALP) and the ubiquitin-proteasome system (UPS) was thought to be an important pathogenic mechanism in synuclein pathology and Parkinson's disease (PD). In the present study, we investigated the role of sestrin2 in autophagic degradation of α-synuclein and preservation of cell viability in a rotenone-induced cellular model of PD. We speculated that AMP-activated protein kinase (AMPK) was involved in regulation of autophagy and protection of dopaminergic cells against rotenone toxicity by sestrin2. The results showed that both the mRNA and protein levels of sestrin2 were increased in a TP53-dependent manner in Mes 23.5 cells after treatment with rotenone. Genetic knockdown of sestrin2 compromised the autophagy induction in response to rotenone, while overexpression of sestrin2 increased the basal autophagy activity. Sestrin2 presumably enhanced autophagy in an AMPK-dependent fashion, as sestrin2 overexpression activated AMPK, and genetic knockdown of AMPK abrogated autophagy induction by rotenone. Restoration of AMPK activity by metformin after sestrin2 knockdown recovered the autophagy activity. Sestrin2 overexpression ameliorated α-synuclein accumulation, inhibited caspase 3 activation, and reduced the cytotoxicity of rotenone. These results suggest that sestrin2 upregulation attempts to maintain autophagy activity and suppress rotenone cytotoxicity through activation of AMPK, and that sestrin2 exerts a protective effect on dopaminergic cells.


2018 ◽  
Author(s):  
Shinrye Lee ◽  
Yu-Mi Jeon ◽  
Seyeon Kim ◽  
Younghwi Kwon ◽  
Myungjin Jo ◽  
...  

AbstractTDP-43 proteinopathy is a common feature in a variety of neurodegenerative disorders including Amyotrophic lateral sclerosis (ALS) cases, Frontotemporal lobar degeneration (FTLD), and Alzheimer’s disease. However, the molecular mechanisms underlying TDP-43-induced neurotoxicity are largely unknown. In this study, we demonstrated that TDP-43 proteinopathy induces impairment in ubiquitin-proteasome system (UPS) evidenced by an accumulation of ubiquitinated proteins and reduction of proteasome activity in neuronal cells. Through kinase inhibitor screening, we identified PTK2 as a suppressor of neurotoxicity induced by UPS impairment. Importantly, PTK2 inhibition significantly reduces ubiquitin aggregates and attenuated TDP-43-induced cytotoxicity in Drosophila model of TDP-43 proteinopathy. We further identified that phosphorylation of p62 at serine 403 (p-p62S403), a key component in the autophagic degradation of poly-ubiquitinated proteins, is increased upon TDP-43 overexpression and dependent on activation of PTK2 in neuronal cells. Moreover, expressing a non-phosphorylated form of p62 (p62S403A) significantly represses accumulation of polyubiquitinated proteins and neurotoxicity induced by TDP-43 overexpression in neuronal cells. In addition, inhibition of TBK1, a kinase which phosphorylates S403 of p62, ameliorates neurotoxicity upon UPS impairment in neuronal cells. Taken together, our data suggest that activation of PTK2-TBK1-p62 axis plays a critical role in the pathogenesis of TDP-43 by regulating neurotoxicity induced by UPS impairment. Therefore, targeting PTK2-TBK1-p62 axis may represent a novel therapeutic intervention for neurodegenerative diseases with TDP-43 proteinopathy.


2005 ◽  
Vol 41 ◽  
pp. 173-186 ◽  
Author(s):  
Didier Attaix ◽  
Sophie Ventadour ◽  
Audrey Codran ◽  
Daniel Béchet ◽  
Daniel Taillandier ◽  
...  

The ubiquitin–proteasome system (UPS) is believed to degrade the major contractile skeletal muscle proteins and plays a major role in muscle wasting. Different and multiple events in the ubiquitination, deubiquitination and proteolytic machineries are responsible for the activation of the system and subsequent muscle wasting. However, other proteolytic enzymes act upstream (possibly m-calpain, cathepsin L, and/or caspase 3) and downstream (tripeptidyl-peptidase II and aminopeptidases) of the UPS, for the complete breakdown of the myofibrillar proteins into free amino acids. Recent studies have identified a few critical proteins that seem necessary for muscle wasting {i.e. the MAFbx (muscle atrophy F-box protein, also called atrogin-1) and MuRF-1 [muscle-specific RING (really interesting new gene) finger 1] ubiquitin–protein ligases}. The characterization of their signalling pathways is leading to new pharmacological approaches that can be useful to block or partially prevent muscle wasting in human patients.


2005 ◽  
Vol 41 (1) ◽  
pp. 173 ◽  
Author(s):  
Didier Attaix ◽  
Sophie Ventadour ◽  
Audrey Codran ◽  
Daniel Béchet ◽  
Daniel Taillandier ◽  
...  

2020 ◽  
Author(s):  
Jon Uranga ◽  
Lukas Hasecke ◽  
Jonny Proppe ◽  
Jan Fingerhut ◽  
Ricardo A. Mata

The 20S Proteasome is a macromolecule responsible for the chemical step in the ubiquitin-proteasome system of degrading unnecessary and unused proteins of the cell. It plays a central role both in the rapid growth of cancer cells as well as in viral infection cycles. Herein, we present a computational study of the acid-base equilibria in an active site of the human proteasome, an aspect which is often neglected despite the crucial role protons play in the catalysis. As example substrates, we take the inhibition by epoxy and boronic acid containing warheads. We have combined cluster quantum mechanical calculations, replica exchange molecular dynamics and Bayesian optimization of non-bonded potential terms in the inhibitors. In relation to the latter, we propose an easily scalable approach to the reevaluation of non-bonded potentials making use of QM/MM dynamics information. Our results show that coupled acid-base equilibria need to be considered when modeling the inhibition mechanism. The coupling between a neighboring lysine and the reacting threonine is not affected by the presence of the inhibitor.


Sign in / Sign up

Export Citation Format

Share Document