scholarly journals PTK2 regulates the UPS impairment via p62 phosphorylation in TDP-43 proteinopathy

2018 ◽  
Author(s):  
Shinrye Lee ◽  
Yu-Mi Jeon ◽  
Seyeon Kim ◽  
Younghwi Kwon ◽  
Myungjin Jo ◽  
...  

AbstractTDP-43 proteinopathy is a common feature in a variety of neurodegenerative disorders including Amyotrophic lateral sclerosis (ALS) cases, Frontotemporal lobar degeneration (FTLD), and Alzheimer’s disease. However, the molecular mechanisms underlying TDP-43-induced neurotoxicity are largely unknown. In this study, we demonstrated that TDP-43 proteinopathy induces impairment in ubiquitin-proteasome system (UPS) evidenced by an accumulation of ubiquitinated proteins and reduction of proteasome activity in neuronal cells. Through kinase inhibitor screening, we identified PTK2 as a suppressor of neurotoxicity induced by UPS impairment. Importantly, PTK2 inhibition significantly reduces ubiquitin aggregates and attenuated TDP-43-induced cytotoxicity in Drosophila model of TDP-43 proteinopathy. We further identified that phosphorylation of p62 at serine 403 (p-p62S403), a key component in the autophagic degradation of poly-ubiquitinated proteins, is increased upon TDP-43 overexpression and dependent on activation of PTK2 in neuronal cells. Moreover, expressing a non-phosphorylated form of p62 (p62S403A) significantly represses accumulation of polyubiquitinated proteins and neurotoxicity induced by TDP-43 overexpression in neuronal cells. In addition, inhibition of TBK1, a kinase which phosphorylates S403 of p62, ameliorates neurotoxicity upon UPS impairment in neuronal cells. Taken together, our data suggest that activation of PTK2-TBK1-p62 axis plays a critical role in the pathogenesis of TDP-43 by regulating neurotoxicity induced by UPS impairment. Therefore, targeting PTK2-TBK1-p62 axis may represent a novel therapeutic intervention for neurodegenerative diseases with TDP-43 proteinopathy.

Author(s):  
Xianquan Zhan ◽  
Miaolong Lu

Ubiquitination is an important post-translational modification. Abnormal ubiquitination is extensively associated with cancers. Lung squamous cell carcinoma (LUSC) is the most common pathological type of lung cancer, with unclear molecular mechanism and the poor overall prognosis of LUSC patient. To uncover the existence and potential roles of ubiquitination in LUSC, label-free quantitative ubiquitomics was performed in human LUSC vs. control tissues. In total, 627 ubiquitinated proteins (UPs) with 1209 ubiquitination sites were identified, including 1133 (93.7%) sites with quantitative information and 76 (6.3%) sites with qualitative information. KEGG pathway enrichment analysis found that UPs were significantly enriched in ubiquitin-mediated proteolysis pathway (hsa04120) and proteasome complex (hsa03050). Further analysis of 400 differentially ubiquitinated proteins (DUPs) revealed that 11 subunits of the proteasome complex were differentially ubiquitinated. These findings clearly demonstrated that ubiquitination was widely present in the ubiquitin-proteasome pathway in LUSCs. At the same time, abnormal ubiquitination might affect the function of the proteasome to promote tumorigenesis and development. This book chapter discussed the status of protein ubiquitination in the ubiquitin-proteasome system (UPS) in human LUSC tissues, which offered the scientific data to elucidate the specific molecular mechanisms of abnormal ubiquitination during canceration and the development of anti-tumor drugs targeting UPS.


2016 ◽  
Vol 212 (7) ◽  
pp. 789-801 ◽  
Author(s):  
Maria J. Pinto ◽  
Pedro L. Alves ◽  
Luís Martins ◽  
Joana R. Pedro ◽  
Hyun R. Ryu ◽  
...  

Differentiation of the presynaptic terminal is a complex and rapid event that normally occurs in spatially specific axonal regions distant from the soma; thus, it is believed to be dependent on intra-axonal mechanisms. However, the full nature of the local events governing presynaptic assembly remains unknown. Herein, we investigated the involvement of the ubiquitin–proteasome system (UPS), the major degradative pathway, in the local modulation of presynaptic differentiation. We found that proteasome inhibition has a synaptogenic effect on isolated axons. In addition, formation of a stable cluster of synaptic vesicles onto a postsynaptic partner occurs in parallel to an on-site decrease in proteasome degradation. Accumulation of ubiquitinated proteins at nascent sites is a local trigger for presynaptic clustering. Finally, proteasome-related ubiquitin chains (K11 and K48) function as signals for the assembly of presynaptic terminals. Collectively, we propose a new axon-intrinsic mechanism for presynaptic assembly through local UPS inhibition. Subsequent on-site accumulation of proteins in their polyubiquitinated state triggers formation of presynapses.


2008 ◽  
Vol 363 (1500) ◽  
pp. 2215-2227 ◽  
Author(s):  
Yoshikuni Mizuno ◽  
Nobutaka Hattori ◽  
Shin-ichiro Kubo ◽  
Shigeto Sato ◽  
Kenya Nishioka ◽  
...  

Recent progresses in the pathogenesis of sporadic Parkinson's disease (PD) and genetics of familial PD are reviewed. There are common molecular events between sporadic and familial PD, particularly between sporadic PD and PARK1 -linked PD due to α - synuclein ( SNCA ) mutations. In sporadic form, interaction of genetic predisposition and environmental factors is probably a primary event inducing mitochondrial dysfunction and oxidative damage resulting in oligomer and aggregate formations of α-synuclein. In PARK1 -linked PD, mutant α-synuclein proteins initiate the disease process as they have increased tendency for self-aggregation. As highly phosphorylated aggregated proteins are deposited in nigral neurons in PD, dysfunctions of proteolytic systems, i.e. the ubiquitin–proteasome system and autophagy–lysosomal pathway, seem to be contributing to the final neurodegenerative process. Studies on the molecular mechanisms of nigral neuronal death in familial forms of PD will contribute further on the understanding of the pathogenesis of sporadic PD.


2016 ◽  
Vol 311 (3) ◽  
pp. C392-C403 ◽  
Author(s):  
Philippe A. Bilodeau ◽  
Erin S. Coyne ◽  
Simon S. Wing

Muscle atrophy complicates many diseases as well as aging, and its presence predicts both decreased quality of life and survival. Much work has been conducted to define the molecular mechanisms involved in maintaining protein homeostasis in muscle. To date, the ubiquitin proteasome system (UPS) has been shown to play an important role in mediating muscle wasting. In this review, we have collated the enzymes in the UPS whose roles in muscle wasting have been confirmed through loss-of-function studies. We have integrated information on their mechanisms of action to create a model of how they work together to produce muscle atrophy. These enzymes are involved in promoting myofibrillar disassembly and degradation, activation of autophagy, inhibition of myogenesis as well as in modulating the signaling pathways that control these processes. Many anabolic and catabolic signaling pathways are involved in regulating these UPS genes, but none appear to coordinately regulate a large number of these genes. A number of catabolic signaling pathways appear to instead function by inhibition of the insulin/IGF-I/protein kinase B anabolic pathway. This pathway is a critical determinant of muscle mass, since it can suppress key ubiquitin ligases and autophagy, activate protein synthesis, and promote myogenesis through its downstream mediators such as forkhead box O, mammalian target of rapamycin, and GSK3β, respectively. Although much progress has been made, a more complete inventory of the UPS genes involved in mediating muscle atrophy, their mechanisms of action, and their regulation will be useful for identifying novel therapeutic approaches to this important clinical problem.


Blood ◽  
2006 ◽  
Vol 108 (11) ◽  
pp. 2193-2193
Author(s):  
Min Zhang ◽  
James C. Moore ◽  
Je Ko ◽  
Wuxia Fu ◽  
Sharmila Prabhu ◽  
...  

Abstract The molecular mechanisms which mediate progression of chronic phase (CP) CML to accelerated and blast phase (BP) disease remain unclear, although one feature that correlates with progression is increased expression of the Bcr-Abl protein itself (Barnes et al., Can. Res. 2005). Increased Bcr-Abl expression is likely to contribute to the more aggressive behavior of BP disease, but the downstream factors that are dysregulated by the increased amounts of Bcr-Abl protein remain to be determined. In these studies we turned our attention to eIF4E since forced expression of eIF4E is transforming, and because increased levels of eIF4E have been found in BP but not CP CML (Topisirovic et al., Mol. Cell. Bio. 2003). eIF4E plays a critical role in cap-dependent translation and allows recruitment of the translation machinery to mRNA. eIF4E is phosphorylated at Ser209, and phosphorylation correlates with exposure to growth factors and increased cap-dependent translation. Using a panel of primary CML cells representing patients at various stages of disease, we confirmed that both Bcr-Abl and eIF4E protein levels were elevated in BP samples compared to those in CP, and furthermore that phosphorylation at Ser209 was dependent on Bcr-Abl kinase activity in BP but not CP samples. We next went on to explore the role of eIF4E phosphorylation in BP CML. Because eIF4E is exclusively phosphorylated at Ser209 by the MAPK signal-integrating kinases (Mnk1/2), we used a small molecule inhibitor of Mnk1/2, CGP57380, to inhibit eIF4E phosphorylation (kind gift of Dr. H. Gram, Novartis). Using MTS assays, we found that CGP57380 exhibited synergistic activity with imatinib mesyalte (IM) against Ba/F3-Bcr-Abl and K562 cells, and that this was associated with increased caspase-3 activation. Consistent with a role for eIF4E phosphorylation in cap-dependent translation, we found that CGP57380 augmented the IM-mediated inhibition of cap-binding complex (eIF4F) formation, as well as loading of mRNA onto polysomes. Interestingly, we also uncovered the existence of a novel negative-feedback loop regulating Mnk kinase. Here, treatment with CGP57380 resulted in increased phosphorylation of Mnk1 as well as its upstream activator, ERK, in a time- and dose-dependent manner. Because activation of the MEK/ERK pathway is essential to Bcr-Abl-mediated transformation, this finding suggested that the full activity of CGP57380 might be obscured by this feedback loop. In support of this, the addition of the MEK inhibitor, U0126, to the IM/CGP57380combination resulted in increased activity against CML cells. The triple combination was also effective against Ba/F3-Bcr-Abl cells harboring the E255K and T315I mutations, but not parental Ba/F3 cells (reduced by 50, 23, and 15% respectively of DMSO-treated controls by MTS assay). Colony forming assays also demonstrated the activity of the IM/CGP57380 combination against CML progenitor cells. In conclusion, our data demonstrate that: eIF4E protein expression and phosphorylation are upregulated in a Bcr-Abl-dependent manner in BP CML; Inhibition of eIF4E phosphorylation by the novel Mnk kinase inhibitor, CGP57380, synergizes with IM in killing CML cells, as well as overcomes certain forms of IM-resistance; The addition of CGP57380 to IM results in inhibition of key steps in cap-dependent mRNA translation, and may provide a mechanistic explanation for the activity of this agent in CML.


2008 ◽  
Vol 295 (6) ◽  
pp. H2541-H2550 ◽  
Author(s):  
Jinbao Liu ◽  
Hanqiao Zheng ◽  
Mingxin Tang ◽  
Youn-Chul Ryu ◽  
Xuejun Wang

The ubiquitin proteasome system (UPS) degrades abnormal proteins and most unneeded normal proteins, thereby playing a critical role in protein homeostasis in the cell. Proteasome inhibition is effective in treating certain forms of cancer, while UPS dysfunction is increasingly implicated in the pathogenesis of many severe and yet common diseases. It has been previously shown that doxorubicin (Dox) enhances the degradation of a UPS surrogate substrate in mouse hearts. To address the underlying mechanism, in the present study, we report that 1) Dox not only enhances the degradation of an exogenous UPS reporter (GFPu) but also antagonizes the proteasome inhibitor-induced accumulation of endogenous substrates (e.g., β-catenin and c-Jun) of the UPS in cultured NIH 3T3 cells and cardiomyocytes; 2) Dox facilitates the in vitro degradation of GFPu and c-Jun by the reconstituted UPS via the enhancement of proteasomal function; 3) Dox at a therapeutically relevant dose directly stimulates the peptidase activities of purified 20S proteasomes; and 4) Dox increases, whereas proteasome inhibition decreases, E3 ligase COOH-terminus of heat shock protein cognate 70 in 3T3 cells via a posttranscriptional mechanism. These new findings suggest that Dox activates the UPS by acting directly on both the ubiquitination apparatus and proteasome.


2021 ◽  
Vol 5 (Supplement_1) ◽  
pp. A438-A438
Author(s):  
Ersin Akarsu ◽  
Can Demirel ◽  
Sibel Oguzkan Balci ◽  
Zeynel A Sayiner ◽  
İbrahim Yilmaz ◽  
...  

Abstract Purpose: The aim of this study is; To examine the destruction of insulin receptor substrate-1 (IRS-1) molecule, which is one of the mechanisms that cause insulin resistance in diabetes and obesity, and its effect to reduce this destruction. For this purpose, the effects of exercise, metformin, exenatide and pioglitazone treatments on IRS-1 ubiquitination in pancreas, muscle and adipose tissue were investigated in an obese and diabetic animal model. Method: Obese rat model was used in this study. This model is characterised by obesity, diabetes and insulin resistance. This study investigated the molecular mechanisms of IRS-1 breakdown in diabetes. IRS1, SOCS1, SOC3 expressions were evaluated in the liver, muscle and adipose tissue of this model. At the same time, immunohistochemical analyses were performed in terms of IRS1, SOCS1 and SOCS3 in the same tissues. Results: Gene expression and Immunohistochemical analysis results were evaluated, the increase in IRS1 was noticeable in rats treated with exenatide, especially in the liver tissue despite the greater decrease in SOCS1 (P> 0.05). It was determined that other drugs in this study and used in the treatment of diabetes may also affect this mechanism to different degrees. Conclusion: Our findings showed that some drugs used in the treatment of diabetes may alter the SOCS effect and / or proteasomal degradation of the IRS-1 protein. This effect was particularly pronounced in liver tissue. However, more comprehensive studies are required to show the contribution of ubiquitination in the destruction of IRS-1 and which drugs are effective on this mechanism. Acknowledgement: This study was supported by the Scientific And Tecnological Research Council Of Turkey (TÜBİTAK) Project No: 217S089


2021 ◽  
Author(s):  
Shweta Tendulkar ◽  
Sushmitha Hegde ◽  
Aparna Thulasidharan ◽  
Lovleen Garg ◽  
Bhagyashree Kaduskar ◽  
...  

Amyotrophic Lateral Sclerosis (ALS) is a fatal, late-onset, progressive motor neurodegenerative disorder. We have been studying cellular and molecular mechanisms involved in ALS using a vesicle-associated membrane protein-associated protein B (VAPB/ALS8) Drosophila model, which mimics many systemic aspects of the human disease. Here, we show that the ER-resident VAPB interacts with Caspar, an ortholog of human fas associated factor 1 (FAF1). Caspar, in turn, interacts with transitional endoplasmic reticulum ATPase (TER94), a fly ortholog of ALS14 (VCP/p97, Valosin-containing protein), via its UBX domain and poly-ubiquitinated proteins with its UBA domain. Caspar overexpression in the glia extends lifespan and also slows the progression of motor dysfunction in the ALS8 model, a phenomenon that we ascribe to its ability to restrain age-dependant inflammation, modulated by Relish/NFBκ signaling. We hypothesize that Caspar is a key molecule in the pathogenesis of ALS. Caspar connects the plasma membrane (PM) localized immune signalosome to the ER-based VAPB degradative machinery, presumably at PM:ER contact sites. The Caspar:TER94:VAPB complex appears to be a strong candidate for regulating both protein homeostasis and NFκ signaling. These, in turn, regulate glial inflammation and determine the progression of the disease. Our study projects human FAF1 as an important protein target to alleviate the progression of motor neuron disease.


Sign in / Sign up

Export Citation Format

Share Document