Differential angiogenic activities of naringin and naringenin in zebrafish in vivo and human umbilical vein endothelial cells in vitro

2018 ◽  
Vol 49 ◽  
pp. 369-377 ◽  
Author(s):  
Linmin Chen ◽  
Binrui Yang ◽  
Benqin Tang ◽  
Guiyi Gong ◽  
Hiotong Kam ◽  
...  
RSC Advances ◽  
2019 ◽  
Vol 9 (40) ◽  
pp. 22921-22930 ◽  
Author(s):  
Kongpeng Lv ◽  
Qin Ren ◽  
Xingyan Zhang ◽  
Keda Zhang ◽  
Jia Fei ◽  
...  

Pro-angiogenic activity of astilbin on endothelial cells in vitro and zebrafish in vivo.


2004 ◽  
Vol 10 (24) ◽  
pp. 8250-8265 ◽  
Author(s):  
Florence Lefranc ◽  
Tatjana Mijatovic ◽  
Véronique Mathieu ◽  
Sandrine Rorive ◽  
Christine Decaestecker ◽  
...  

2018 ◽  
Vol 32 (8) ◽  
pp. 1063-1070 ◽  
Author(s):  
Liancheng Xu ◽  
Yibing Guo ◽  
Yan Huang ◽  
Yicheng Xiong ◽  
Yang Xu ◽  
...  

Pancreas transplantation is considered as a promising therapeutic option with the potential to cure diabetes. However, efficacy of current clinical transplantation is limited by the donor organ. With regard to creating a functional pancreas-tissue equivalent for transplantation, vascularization remains a large obstacle. To enhance the angiogenic properties of pancreatic decellularized scaffold, surface modification of the vasculature was used to promote endothelialization efficiency. In this study, an endothelialized pancreatic decellularized scaffold was obtained through heparin modification under mild conditions. The immobilization of heparin was performed through 1-ethyl-3–(3-dimethylaminopropyl)-carbodiimide and N-Hydroxysuccinimide. The morphology, ultra-structure and porosity of the heparinized scaffold were characterized by toluidine blue staining, scanning electron microscope and infrared spectrum. The adhesion, proliferation and angiogenesis of human umbilical vein endothelial cells on heparin-pancreatic decellularized scaffold were also researched in vitro. In vivo transplantation was also performed to observe the location of human umbilical vein endothelial cells and the formation of new blood vessel, which exhibited significant differences with pancreatic decellularized scaffold group (p<0.05). These findings indicated that the endothelialized heparin-pancreatic decellularized scaffold may be used to solve the problem of blood supply and to support the function of insulin-secreting cells better after in vivo transplantation, and therefore, would be a potential candidate for pancreatic tissue engineering.


Tumor Biology ◽  
2017 ◽  
Vol 39 (5) ◽  
pp. 101042831770164
Author(s):  
Guanying Wang ◽  
Na Yuan ◽  
Shangke Huang ◽  
Lu Feng ◽  
Rui Han ◽  
...  

Fibrinogen Asn-Gly-Arg motif can specifically recognize and bind to Aminopeptidase N (CD13) on vascular endothelial cells in newly formed tumor vessels. Adipose-derived stem cells can serve as ideal vectors for gene therapy because of their ability of migrating to tumor tissues. First, this study was aimed to design a new peptide (CNGRCLLII(KLAKLAK)2) named CNAK which contains cyclic Asn-Gly-Arg motif and test its biological activity against human umbilical vein endothelial cells. Second, we aimed to construct stably transfected adipose-derived stem cells which express the CNAK peptide and investigate their anti-angiogenic activity in vivo. Adipose-derived stem cells were employed to localize CNAK on vascular endothelial cells in tumors based on their homing property. First of all, the new peptide was synthesized, which effectively entered into CD13+ human umbilical vein endothelial cells and showed cytotoxicity against human umbilical vein endothelial cells. The peptide induced apoptosis of human umbilical vein endothelial cells in a time- and dose-dependent manner, inhibited the expression of Bcl-2, and promoted the expression of Caspase-3 in human umbilical vein endothelial cells. Furthermore, the migration and tube formation of human umbilical vein endothelial cells were inhibited by CNAK. Primary adipose-derived stem cells were then isolated and identified. Stably transfected adipose-derived stem cells which express CNAK peptide (CNAK-ASCs) were successfully established, and the migration of CNAK-ASCs was assessed. In vivo, CNAK-ASCs were found to inhibit the growth and angiogenesis of breast cancer xenografts. This effect may be through inhibiting the secretion of matrix metalloproteinase-2 and membrane type 1-matrix metalloproteinase in vivo. It was also found that CNAK-ASCs reduced the quantity of breast cancer stem cells in tumor tissues. Our data suggested that the new peptide CNAK containing Asn-Gly-Arg motif had anti-angiogenic activity in vitro and in vivo.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
ShiHua Luo ◽  
SongLin Song ◽  
ChuanSheng Zheng ◽  
Yong Wang ◽  
XiangWen Xia ◽  
...  

We have prepared Chinese traditional herbBletilla striatainto microspheres as a novel embolic agent for decades. The aim of this study was to evaluate the biocompatibility ofBletilla striatamicrospheres (BSMs). After a thermal test of BSMs in vitro, the cell biocompatibility of BSMs was investigated in mouse fibroblasts and human umbilical vein endothelial cells using the methyl tetrazolium (MTT) assay. In addition, blood biocompatibility was evaluated. In vivo intramuscular implantation and renal artery embolization in rabbits with BSMs were used to examine the inflammatory response. The experimental rabbits did not develop any fever symptoms after injection of BSMs, and BSMs exhibited no cytotoxicity in cultured mouse fibroblasts and human umbilical vein endothelial cells. Additionally, BSMs exhibited high compatibility with red blood cells and no hemolysis activity. Intramuscular implantation with BSMs resulted in a gradually lessened mild inflammatory reaction that disappeared after eight weeks. The occlusion of small renal vessels was associated with a mild perivascular inflammatory reaction without significant renal and liver function damage. In conclusion, we believe that BSMs exhibit high biocompatibility and are a promising embolic agent.


1988 ◽  
Vol 91 (2) ◽  
pp. 231-238
Author(s):  
D.M. Morgan ◽  
J. Clover ◽  
J.D. Pearson

Naturally occurring cationic proteins secreted by human granulocytes have pro-inflammatory effects including induction of increased vascular permeability and oedema, which are likely to be mediated by damage to vascular endothelium. Synthetic cationic polyamino acids have been shown to exert similar inflammatory effects in vivo. We have therefore used a range of synthetic polycationic amino acids to investigate the characteristics required to cause endothelial cell damage, assessed by in vitro inhibition of leucine incorporation into macromolecules by human umbilical vein endothelial cells (HUVEC) in culture. Exposure of HUVEC to 20 nM-2 microM cationic polypeptides of similar Mr(av) (approximately 40,000) in the presence of 20% serum produced a dose-dependent inhibition of [3H]leucine incorporation by polymers of ornithine, arginine or lysine. Similar results were obtained using [3H]thymidine. Neutral or anionic polypeptides of similar Mr were without effect. The molar potency of polylysines increased over the range Mr 40,000-120,000, while polylysines of Mr(av) less than 25,000 had no effect. In the absence of serum, inhibition occurred more rapidly and at lower doses. Inhibition of leucine and thymidine incorporation was time-dependent, e.g. exposure to 800 nM-polylysine, Mr(av) 90,000, led to progressively increasing inhibition that was complete after 24 h exposure, and was irreversible. The effects of polycations could not be blocked by pretreatment of the cells with polyanions. Precoating of the culture surface with polylysines had no effect on leucine incorporation by HUVEC or their subsequent response to polylysines in solution. Exposure to the peptide Arg-Gly-Asp-Ser inhibited incorporation by 30% but did not increase susceptibility to polylysine.(ABSTRACT TRUNCATED AT 250 WORDS)


Sign in / Sign up

Export Citation Format

Share Document