Numerical investigation of magnetic-field induced self-assembly of nonmagnetic particles in magnetic fluids

2020 ◽  
Vol 97 ◽  
pp. 103008 ◽  
Author(s):  
MuFeng Chen ◽  
XiaoDong Niu ◽  
Peng Yu ◽  
Qiaozhong Li ◽  
You Li ◽  
...  
2021 ◽  
Vol 119 (4) ◽  
pp. 041601
Author(s):  
Zhaoyi Wang ◽  
Ran Tao ◽  
Jun Wu ◽  
Bing Li ◽  
Chonglei Hao
Keyword(s):  

2021 ◽  
Vol 12 (1) ◽  
pp. 270-281
Author(s):  
Stefan Bitter ◽  
Moritz Schlötter ◽  
Markus Schilling ◽  
Marina Krumova ◽  
Sebastian Polarz ◽  
...  

The self-organization properties of a stimuli responsive amphiphile can be altered by subjecting the paramagnetic oxidized form to a magnetic field of 0.8 T and monitored in real time by coupling optical birefringence with dynamic light scattering.


Nanoscale ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 4519-4529
Author(s):  
J. Mohapatra ◽  
J. Elkins ◽  
M. Xing ◽  
D. Guragain ◽  
Sanjay R. Mishra ◽  
...  

Self-assembly of nanoparticles into ordered patterns is a novel approach to build up new consolidated materials with desired collective physical properties.


2014 ◽  
Vol 18 (5-6) ◽  
pp. 795-806 ◽  
Author(s):  
Ching-Yao Chen ◽  
Hao-Chung Hsueh ◽  
Sheng-Yan Wang ◽  
Yan-Hom Li

2018 ◽  
Vol 145 ◽  
pp. 03003
Author(s):  
Polya Dobreva ◽  
Monio Kartalev ◽  
Olga Nitcheva ◽  
Natalia Borodkova ◽  
Georgy Zastenker

We investigate the behaviour of the plasma parameters in the magnetosheath in a case when Interball-1 satellite stayed in the magnetosheath, crossing the tail magnetopause. In our analysis we apply the numerical magnetosheath-magnetosphere model as a theoretical tool. The bow shock and the magnetopause are self-consistently determined in the process of the solution. The flow in the magnetosheath is governed by the Euler equations of compressible ideal gas. The magnetic field in the magnetosphere is calculated by a variant of the Tsyganenko model, modified to account for an asymmetric magnetopause. Also, the magnetopause currents in Tsyganenko model are replaced by numericaly calulated ones. Measurements from WIND spacecraft are used as a solar wind monitor. The results demonstrate a good agreement between the model-calculated and measured values of the parameters under investigation.


Author(s):  
Francisco J. Arias ◽  
Salvador A. De Las Heras

Abstract In this work, consideration is given to capillary convection on ferrofluids from the concentration gradient induced when a nonhomogeneous magnetic field is applied. It is known that mass transfer along an interface between two fluids can appear due to a gradient of the surface tension in the so-called Marangoni effect (or Gibbs–Marangoni effect). Because the surface tension is both thermal and concentration dependent, Marangoni convection can be induced by either a thermal or a concentration gradient, where in the former case, it is generally referred as thermocapillary convection. Now, it has been theoretically and experimentally demonstrated that a ferrofluid under the action of a non-homogeneous magnetic field can induce a concentration gradient of suspended magnetic nanoparticles, and also the effect of Fe3O4 nanoparticles on the surface tension has been measured. Therefore, by deductive reasoning and taking into account the above mentioned facts, it is permissible to infer ferrohydrodynamic capillary convection on magnetic fluids under the presence of a magnetic gradient field. Utilizing a simplified physical model, the phenomenon was investigated and it was found that ferrohydrodynamic-Marangoni convection could be induced with particle size in the range up to 10 nm, which is the range of magnetic fluids to escape magnetic agglomeration.


Sign in / Sign up

Export Citation Format

Share Document