scholarly journals Modelling water and salt diffusion of cold-smoked Atlantic salmon initially immersed in refrigerated seawater versus on ice

2021 ◽  
pp. 110747
Author(s):  
Sherry Stephanie Chan ◽  
Aberham Hailu Feyissa ◽  
Flemming Jessen ◽  
Bjørn Roth ◽  
Anita Nordeng Jakobsen ◽  
...  
Aquaculture ◽  
2004 ◽  
Vol 232 (1-4) ◽  
pp. 255-263 ◽  
Author(s):  
Anna Maria Bencze Rørå ◽  
Roar Furuhaug ◽  
Svein Olav Fjæra ◽  
Per Olav Skjervold

2001 ◽  
Vol 32 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Sjofn Sigurgisladottir ◽  
Margret S. Sigurdardottir ◽  
Helga Ingvarsdottir ◽  
Ole J. Torrissen ◽  
Hannes Hafsteinsson

2020 ◽  
Vol 139 ◽  
pp. 161-174
Author(s):  
R Palmer ◽  
GTA Fleming ◽  
S Glaeser ◽  
T Semmler ◽  
A Flamm ◽  
...  

During 1992 and 1993, a bacterial disease occurred in a seawater Atlantic salmon Salmo salar farm, causing serious mortalities. The causative agent was subsequently named as Oceanivirga salmonicida, a member of the Leptotrichiaceae. Searches of 16S rRNA gene sequence databases have shown sequence similarities between O. salmonicida and uncultured bacterial clones from the digestive tracts of marine mammals. In the current study, oral samples were taken from stranded dolphins (common dolphin Delphinus delphis, striped dolphin Stenella coeruleoalba) and healthy harbour seals Phoca vitulina. A bacterium with growth characteristics consistent with O. salmonicida was isolated from a common dolphin. The isolate was confirmed as O. salmonicida, by comparisons to the type strain, using 16S rRNA gene, gyrB, groEL, and recA sequence analyses, average nucleotide identity analysis, and MALDI-TOF mass spectrometry. Metagenomic analysis indicated that the genus Oceanivirga represented a significant component of the oral bacterial microbiomes of the dolphins and seals. However, sequences consistent with O. salmonicida were only found in the dolphin samples. Analyses of marine mammal microbiome studies in the NCBI databases showed sequences consistent with O. salmonicida from the common dolphin, striped dolphin, bottlenose dolphin Tursiops truncatus, humpback whale Megaptera novaeangliae, and harbour seal. Sequences from marine environmental studies in the NCBI databases showed no sequences consistent with O. salmonicida. The findings suggest that several species of marine mammals are natural hosts of O. salmonicida.


2018 ◽  
Author(s):  
Ryan Kingsbury ◽  
Shan Zhu ◽  
Sophie Flotron ◽  
Orlando Coronell

Ion exchange membrane (IEM) performance in electrochemical processes such as fuel cells, redox flow batteries, or reverse electrodialysis (RED) is typically quantified through membrane selectivity and conductivity, which together determine the energy efficiency. However, water and co-ion transport (i.e., osmosis and salt diffusion / fuel crossover) also impact energy efficiency by allowing uncontrolled mixing of the electrolyte solutions to occur. For example, in RED with hypersaline water sources, uncontrolled mixing consumes 20-50% of the available mixing energy. Thus, in addition to high selectivity and high conductivity, it is desirable for IEMs to have low permeability to water and salt in order to minimize energy losses. Unfortunately, there is very little quantitative water and salt permeability information available for commercial IEMs, making it difficult to select the best membrane for a particular application. Accordingly, we measured the water and salt transport properties of 20 commercial IEMs and analyzed the relationships between permeability, diffusion and partitioning according to the solution-diffusion model. We found that water and salt permeance vary over several orders of magnitude among commercial IEMs, making some membranes better-suited than others to electrochemical processes that involve high salt concentrations and/or concentration gradients. Water and salt diffusion coefficients were found to be the principal factors contributing to the differences in permeance among commercial IEMs. We also observed that water and salt permeability were highly correlated to one another for all IEMs studied, regardless of polymer type or reinforcement. This finding suggests that transport of mobile salt in IEMs is governed by the microstructure of the membrane, and provides clear evidence that mobile salt does not interact strongly with polymer chains in highly-swollen IEMs. <br>


1994 ◽  
Vol 29 (3) ◽  
pp. 37-41 ◽  
Author(s):  
W. G. Cazemier

In the past, the anadromous salmonids, Atlantic salmon (Salmo salar) and sea-trout (Salmo trutta), have formed natural populations in the river Rhine. From the beginning of the nineteenth century onwards, the greater part of the drainage area of the river has been gradually altered from a more or less rural and agricultural area, into a highly industrialised one with subsequent industrialisation, river-engineering and heavy pollution. These developments are considered to be the major cause for the disappearance of the populations of anadromous salmonid fish in the 1950s. The water quality has recovered significantly during the past 25 years. From about 1975 onwards, this process gave rise to a recovery of the anadromous trout population. Results of recent studies of the sea-trout migration pattern are presented. They reveal that nowadays these salmonids can complete their up- and downstream migrations from the North Sea to places, situated at hundreds of kilometres upward the river and vica versa. The numbers of recorded Atlantic salmon and catch locations in inland waters are presented. They show a significant increase since 1989. These phenomena can be understood as promising signs of the recovery of the Rhine aquatic ecosystem.


Sign in / Sign up

Export Citation Format

Share Document