Chronic nutrient loading from Lake Erie affecting water quality and nuisance algae on the St. Catharines shores of Lake Ontario

2017 ◽  
Vol 43 (5) ◽  
pp. 899-915 ◽  
Author(s):  
E. Todd Howell ◽  
Alice Dove
Water ◽  
2018 ◽  
Vol 10 (11) ◽  
pp. 1569 ◽  
Author(s):  
E. Howell

Urban centers border western Lake Ontario, the terminus of the Laurentian Great Lakes, impacting water quality on the shores of this oligotrophic lake. The green algae Cladophora proliferates on the shallow lakebed and fouls the shoreline, presenting an eutrophication concern. The conditions over a typical urbanized shoreline were studied to assess linkages between Cladophora and area nutrient sources. The most pervasive of the mixing areas of varying extent identified using field sensor measurements was associated with the discharge of treated sewage from a Water Pollution Control Plant (WPCP). Phosphorus and nitrogen were enriched at times near the WPCP diffuser and also in shallow water along the shoreline. Dissolved nutrients were also measured directly above the lakebed in close proximity to Cladophora. Dissolved phosphorus and inorganic nitrogen were higher in proximity to the WPCP diffuser at times, however, spatial patterns were not as clearly aligned with external inputs as the patterns of enrichment in the water column. Biomass distribution of Cladophora was unrelated to nutrient levels in the water column or at the lakebed. Yet, concentrations of phosphorus in Cladophora, an indicator of nutrient sufficiency, were higher near the WPCP diffuser. This disparity, while possibly an artifact of variable loss rates of biomass among locations, may in part stem from variable water clarity among areas. Abundant dreissenid mussels also potentially obscure the effects of nutrient loading on algal biomass if the sequestering of phosphorus from offshore plankton, suggested by periods of onshore circulation, approaches the extent of external loading. Further study of phosphorus flux at the lakebed is required to establish clear linkages between external nutrient loading and algal growth in order to manage the proliferation of Cladophora over urban coastline.


1996 ◽  
Vol 31 (2) ◽  
pp. 411-432 ◽  
Author(s):  
Michael E. Comba ◽  
Janice L. Metcalfe-Smith ◽  
Klaus L.E. Kaiser

Abstract Zebra mussels were collected from 24 sites in Lake Erie, Lake Ontario and the St. Lawrence River between 1990 and 1992. Composite samples of whole mussels (15 sites) or soft tissues (9 sites) were analyzed for residues of organochlo-rine pesticides and PCBs to evaluate zebra mussels as biomonitors for organic contaminants. Mussels from most sites contained measurable quantities of most of the analytes. Mean concentrations were (in ng/g, whole mussel dry weight basis) 154 ΣPCB, 8.4 ΣDDT, 3.5 Σchlordane, 3.4 Σaldrin, 1.4 ΣBHC, 1.0 Σendosulfan, 0.80 mirex and 0.40 Σchlorobenzene. Concentrations varied greatly between sites, i.e., from 22 to 497 ng/g for ΣPCB and from 0.08 to 11.6 ng/g for ΣBHC, an indication that mussels are sensitive to different levels of contamination. Levels of ΣPCB and Σendosulfan were highest in mussels from the St. Lawrence River, whereas mirex was highest in those from Lake Ontario. Overall, mussels from Lake Erie were the least contaminated. These observations agree well with the spatial contaminant trends shown by other biomoni-toring programs. PCB congener class profiles in zebra mussels are also typical for nearby industrial sources, e.g., mussels below an aluminum casting plant contained 55% di-, tri- and tetrachlorobiphenyls versus 31% in those upstream. We propose the use of zebra mussels as biomonitors of organic contamination in the Great Lakes.


Water ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1215
Author(s):  
László Berzi-Nagy ◽  
Attila Mozsár ◽  
Flórián Tóth ◽  
Dénes Gál ◽  
Zoltán Nagy ◽  
...  

Semi-intensive common carp (Cyprinus carpio) farm technology uses several feed types affecting the growth performance; however, we know less about their long-term effects on water quality. Herein, we evaluated the effects of three commonly used feeds—moderate levels of fish meal and fish oil feed (FF), plant meal and plant oil feed (PF), and cereal feed (CF) on the nutrient (total nitrogen (TN), total phosphorus (TP) and organic matter (OM)) content of the pond water. The experiment was carried out over three consecutive years from juveniles to market-sized fish. The type of feed affected the net yields, but generally, it did not affect the water quality. The year of sampling, however, was a significant factor affecting TN, TP, and OM, whose concentrations decreased during the three years. Our findings highlight that the age of the stocked fish on water quality has a more pronounced effect than the nutrient profile of the supplementary feed. Additionally, the plant-based feed could provide comparable net yields as the fish meal-based feed without additional nutrient loading in the water column, reinforcing the sustainability of alternative feeds in semi-intensive carp farming.


1972 ◽  
Vol 50 (9) ◽  
pp. 1183-1188 ◽  
Author(s):  
M. Chen ◽  
G. Power

In samples taken monthly throughout the year the percentage of American smelt in Lake Ontario and Lake Erie containing cysts of Glugea hertwigi was 5.2% and 62.7% respectively. Sexual differences in incidence were observed, the significance of which was uncertain as results from the two lakes were contradictory.In male fish infection was almost entirely restricted to the digestive tract with few cysts in the liver, skin, and testes. In female fish the digestive tract and ovaries were similarly infected.Seasonal fluctuations in Glugea infection were obvious and seemed correlated with the gonadal cycle. In both sexes the highest parasite load corresponded with the onset of maturation.A striking difference in fecundity between the two smelt populations was attributed to the Glugea infection. In females parasite cysts replaced ovarian tissue, causing a reduction in the number of maturing eggs.


2003 ◽  
Vol 38 (4) ◽  
pp. 607-626 ◽  
Author(s):  
Vinod Tare ◽  
Purnendu Bose ◽  
Santosh K. Gupta

Abstract In India, the implementation of river-cleaning operations through River Action Plans (RAPs) conventionally focuses on a reduction in concentrated or point sources of organic loading to the river, and is assessed by monitoring the consequent improvement in river water quality. However, in the case of Indian rivers or river stretches having substantial background pollution due to distributed or non-point loading of organic matter and nutrients, elimination of point sources of pollution may not substantially impact or improve river water quality. It is suggested that implementation of River Action Plans in India under such circumstances must be conducted using a multi-tier approach. The initial emphasis in such cases should be on the selection of priority stretches of the river, where pollution control will have maximum beneficial impact on the citizens, and interception and diversion of all concentrated or point loads of pollution from these stretches. In addition, measures to minimize non-point pollution and visible pollution to the river and initiation of riverfront restoration and development projects are necessary in these priority stretches. Such measures would result in aesthetic improvements, increase the beneficial uses of the river and its surroundings, and generate favorable public perception towards RAPs, though they may not be sufficient to enhance the river water quality to the desired levels. However, as a result of the above actions, public support for funding more expensive and longer-term river cleaning schemes, resulting in comprehensive reduction in organic and nutrient loading to the river from point and non-point sources all along its length, may be generated. The need for this alternative methodology for implementation and assessment of RAPs in India has been illustrated by taking the example of the Ganga Action Plan (GAP) and assessment of its implementation near the city of Kanpur in the state of Uttar Pradesh, India, as a test case.


Limnologica ◽  
2003 ◽  
Vol 33 (3) ◽  
pp. 190-204 ◽  
Author(s):  
Peter Kasprzak ◽  
Rainer Koschel ◽  
Lothar Krienitz ◽  
Thomas Gonsiorczyk ◽  
Karl Anwand ◽  
...  

2017 ◽  
Vol 43 (6) ◽  
pp. 1005-1015 ◽  
Author(s):  
Melanie V. Croft-White ◽  
Maja Cvetkovic ◽  
Daniel Rokitnicki-Wojcik ◽  
Jonathan D. Midwood ◽  
Greg P. Grabas

2001 ◽  
Vol 58 (5) ◽  
pp. 858-869 ◽  
Author(s):  
L Boegman ◽  
M R Loewen ◽  
P F Hamblin ◽  
D A Culver

The relative impacts of changes in nutrient loading and zebra mussel establishment on plankton in large lakes are strongly influenced by hydrodynamics, yet adequately modelling the temporal-spatial complexity of physical and biological processes has been difficult. We adapted a two-dimensional public domain model, CE-QUAL-W2, to test whether it could provide a hydrodynamically accurate simulation of the seasonal variation in the vertical-longitudinal thermal structure of Lake Erie. The physical forcing for the model is derived from surface meteorological buoys and measurements of precipitation, inflows, and outflows. To calibrate and validate the model, predictions were compared with an extensive set of field data collected during May through September 1994. The model accurately predicted water-level fluctuations without adjustment. However, significant modifications to the eddy coefficient turbulence algorithm were required to simulate acceptable longitudinal currents. The thermal structure was accurately predicted in all three basins, even though this laterally averaged model cannot simulate Coriolis effects. We are currently extending the model's water-quality module to include the effects of nutrient loading and zebra mussels on the plankton.


Sign in / Sign up

Export Citation Format

Share Document