scholarly journals Microemulsion-based hydrogels for enhancing epidermal/dermal deposition of topically administered 20(S)-protopanaxadiol: in vitro and in vivo evaluation studies

2018 ◽  
Vol 42 (4) ◽  
pp. 512-523 ◽  
Author(s):  
Ki-Taek Kim ◽  
Min-Hwan Kim ◽  
Ju-Hwan Park ◽  
Jae-Young Lee ◽  
Hyun-Jong Cho ◽  
...  
2019 ◽  
Vol 18 (9) ◽  
pp. 1289-1294 ◽  
Author(s):  
Kusum Vats ◽  
Rohit Sharma ◽  
Haladhar D. Sarma ◽  
Drishty Satpati ◽  
Ashutosh Dash

Aims: The urokinase Plasminogen Activator Receptors (uPAR) over-expressed on tumor cells and their invasive microenvironment are clinically significant molecular targets for cancer research. uPARexpressing cancerous lesions can be suitably identified and their progression can be monitored with radiolabeled uPAR targeted imaging probes. Hence this study aimed at preparing and evaluating two 68Ga-labeled AE105 peptide conjugates, 68Ga-NODAGA-AE105 and 68Ga-HBED-CC-AE105 as uPAR PET-probes. Method: The peptide conjugates, HBED-CC-AE105-NH2 and NODAGA-AE105-NH2 were manually synthesized by standard Fmoc solid phase strategy and subsequently radiolabeled with 68Ga eluted from a commercial 68Ge/68Ga generator. In vitro cell studies for the two radiotracers were performed with uPAR positive U87MG cells. Biodistribution studies were carried out in mouse xenografts with the subcutaneously induced U87MG tumor. Results: The two radiotracers, 68Ga-NODAGA-AE105 and 68Ga-HBED-CC-AE105 that were prepared in >95% radiochemical yield and >96% radiochemical purity, exhibited excellent in vitro stability. In vivo evaluation studies revealed higher uptake of 68Ga-HBED-CC-AE105 in U87MG tumor as compared to 68Ga-NODAGAAE105; however, increased lipophilicity of 68Ga-HBED-CC-AE105 resulted in slower clearance from blood and other non-target organs. The uPAR specificity of the two radiotracers was ascertained by significant (p<0.05) reduction in the tumor uptake with a co-injected blocking dose of unlabeled AE-105 peptide. Conclusion: Amongst the two radiotracers studied, the neutral 68Ga-NODAGA-AE105 with more hydrophilic chelator exhibited faster clearance from non-target organs. The conjugation of HBED-CC chelator (less hydrophilic) resulted in negatively charged 68Ga-HBED-CC-AE105 which was observed to have high retention in blood that decreased target to non-target ratios.


2020 ◽  
Vol 08 ◽  
Author(s):  
Adella Aparna ◽  
Yamsani Shravan Kumar ◽  
D.V.R.N. Bhikshapathi

Background: Ticagrelor (TGR) being antiplatelet agent belongs to BCS class IV drug with low solubility and permeability that undergoes first-pass metabolism leads to reduced bioavailability of 36%. Objective: The main goal of the present study was to develop TGR SNEDDS for improving solubility and oral bioavailability. Methods: An oil, surfactant and co-surfactant (miglyol 810, brij 35 and lauro glycol FCC) were chosen based on the maximum solubility of TGR. The chosen vehicles were mixed in varying ratios and agitated mildly and transmittance values more than 80 were noted and used for constructing pseudo ternary phase diagram. Formulations that passed stability testing were evaluated for % transmission, drug content and in vitro drug release analysis. In-vivo bioavailability studies of optimized SNEDDS were performed in wistar rats. Results: From evaluation studies of TGR, formulation F13 with maximum drug release of 98.99% in 60 minutes that is higher than 31.99 % of pure drug is considered the optimised formulation. The particle size, Z average and zeta potential of the optimized TGR formulation F13 was 289.6 nm, 185.1 nm and -18.3 mV respectively. The FTIR and SEM studies do not indicate any drug excipient interaction and confirm nanosize and stable for 3 months. From in vivo bioavailability studies in rats, the Cmax of optimized TGR SNEDDS (302.43±4.78ng/ml) was higher than pure TGR suspension (47.32±2.75ng/ml) and optimized SNEDDS exhibited 5 folds increased oral bioavailability than pure drug. Conclusion: Hence, the results revealed that application of SNEDDS formulation technique for TGR increased solubility and oral bioavailability.


2018 ◽  
Vol 90 ◽  
pp. 227-235 ◽  
Author(s):  
Tamer M. Tamer ◽  
Katarína Valachová ◽  
Mohamed A. Hassan ◽  
Ahmed M. Omer ◽  
Muhammad El-Shafeey ◽  
...  

Planta Medica ◽  
2010 ◽  
Vol 76 (12) ◽  
Author(s):  
J Bauer ◽  
F Dehm ◽  
A Koeberle ◽  
F Pollastro ◽  
G Appendino ◽  
...  

Author(s):  
Venu Madhav K ◽  
Somnath De ◽  
Chandra Shekar Bonagiri ◽  
Sridhar Babu Gummadi

Fenofibrate (FN) is used in the treatment of hypercholesterolemia. It shows poor dissolution and poor oral bioavailability after oral administration due to high liphophilicity and low aqueous solubility. Hence, solid dispersions (SDs) of FN (FN-SDs) were develop that might enhance the dissolution and subsequently oral bioavailability. FN-SDs were prepared by solvent casting method using different carriers (PEG 4000, PEG 6000, β cyclodextrin and HP β cyclodextrin) in different proportions (0.25%, 0.5%, 0.75% and 1% w/v). FN-SDs were evaluated solubility, assay and in vitro release studies for the optimization of SD formulation. Differential scanning calorimetry (DSC), powder X-ray diffraction (PXRD) and scanning electron microscopy (SEM) analysis was performed for crystalline and morphology analysis, respectively. Further, optimized FN-SD formulation evaluated for pharmacokinetic performance in Wistar rats, in vivo in comparison with FN suspension.  From the results, FN-SD3 and FN-SD6 have showed 102.9 ±1.3% and 105.5±3.1% drug release, respectively in 2 h. DSC and PXRD studies revealed that conversion of crystalline to amorphous nature of FN from FT-SD formulation. SEM studies revealed the change in the orientation of FN when incorporated in SDs. The oral bioavailability FN-SD3 and FN-SD6 formulations exhibited 2.5-folds and 3.1-folds improvement when compared to FN suspension as control. Overall, SD of FN could be considered as an alternative dosage form for the enhancement of oral delivery of poorly water-soluble FN.


Author(s):  
Y. Srinivasa Rao ◽  
K. Adinarayana Reddy

Fast dissolving oral delivery systems are solid dosage forms, which disintegrate or dissolve within 1 minute in the mouth without drinking water or chewing. Mouth dissolving film (MDF) is a better alternate to oral disintegrating tablets due to its novelty, ease of use and the consequent patient compliance. The purpose of this work was to develop mouth dissolving oral films of palonosetron HCl, an antiemetic drug especially used in the prevention and treatment of chemotherapy-induced nausea and vomiting. In the present work, the films were prepared by using solvent casting method with various polymers HPMC E3, E5 & E15 as a film base synthetic polymer, propylene glycol as a plasticizer and maltodextrin and other polymers. Films were found to be satisfactory when evaluated for thickness, in vitro drug release, folding endurance, drug content and disintegration time. The surface pH of all the films was found to be neutral. The in vitro drug release of optimized formulation F29 was found to be 99.55 ± 6.3 7% in 7 min. The optimized formulation F29 also showed satisfactory surface pH, drug content (99.38 ± 0.08 %), disintegration time of 8 seconds and good stability. FTIR data revealed that no interaction takes place between the drug and polymers used in the optimized formulation. In vitro and in vivo evaluation of the films confirmed their potential as an innovative dosage form to improve delivery and quick onset of action of Palonosetron Hydrochloride. Therefore, the mouth dissolving film of palonosetron is potentially useful for the treatment of emesis disease where quick onset of action is desired, also improved patient compliance.


Author(s):  
Bhikshapathi D. V. R. N. ◽  
Kanteepan P

Rebamipide, an amino acid derivative of 2-(1H)-quinolinone, is used for mucosal protection, healing of gastroduodenal ulcers, and treatment of gastritis. The current research study aimed to develop novel gastro-retentive mucoadhesive microspheres of rebamipide using ionotropic gelation technique. Studies of micromeritic properties confirmed that microspheres were free flowing with good packability. The in vitro drug release showed the sustained release of rebamipide up to 99.23 ± 0.13% within 12 h whereas marketed product displayed the drug release of 95.15 ± 0.23% within 1 h. The release mechanism from microspheres followed the zero-order and Korsmeyer-Peppas (R2 = 0.915, 0.969), respectively. The optimized M12 formulation displayed optimum features, such as entrapment efficiency 97%, particle size 61.94 ± 0.11 µm, percentage yield 98%, swelling index 95% and mucoadhesiveness was 97%. FTIR studies revealed no major incompatibility between drug and excipients. SEM confirmed the particles were of spherical in shape. Optimized formulation (M12) were stable at 40°C ± 2°C/75% RH ± 5% RH for 6 months. In vivo studies were performed and kinetic parameters like Cmax, Tmax, AUC0-t, AUC0-∞, t1/2, and Kel  were calculated. The marketed product Cmax (3.15 ± 0.05 ng/mL) was higher than optimized formulation (2.58 ± 0.03 ng/mL). The optimized formulation AUC0-t (15.25 ± 1.14 ng.hr/mL), AUC0-∞ (19.42 ± 1.24 ng.hr/mL) was significantly higher than that of marketed product AUC0-t (10.21 ± 1.26 ng.hr/mL) and AUC0-∞ (13.15 ± 0.05 ng.hr/mL). These results indicate an optimized formulation bioavailability of 2.5-fold greater than marketed product.  


2019 ◽  
Vol 20 (1) ◽  
pp. 56-62 ◽  
Author(s):  
Chi Zhang ◽  
Zhichun Gu ◽  
Long Shen ◽  
Xianyan Liu ◽  
Houwen Lin

Background: To deliver drugs to treat Alzheimer’s Disease (AD), nanoparticles should firstly penetrate through blood brain barrier, and then target neurons. Methods: Recently, we developed an Apo A-I and NL4 dual modified nanoparticle (ANNP) to deliver beta-amyloid converting enzyme 1 (BACE1) siRNA. Although promising in vitro results were obtained, the in vivo performance was not clear. Therefore, in this study, we further evaluated the in vivo neuroprotective effect and toxicity of the ANNP/siRNA. The ANNP/siRNA was 80.6 nm with good stability when incubated with serum. In vivo, the treatment with ANNP/siRNA significantly improves the spatial learning and memory of APP/PS1 double transgenic mice, as determined by mean escape latency, times of crossing the platform area during the 60 s swimming and the percentage of the distance in the target quadrant. Results and Conclusion: After the treatment, BACE1 RNA level of ANNP/siRNA group was greatly reduced, which contributed a good AD treatment outcome. Finally, after repeated administration, the ANNP/siRNA did not lead to significant change as observed by HE staining of main organs, suggesting the good biocompatibility of ANNP/siRNA. These results demonstrated that the ANNP was a good candidate for AD targeting siRNA delivery.


Sign in / Sign up

Export Citation Format

Share Document