Leaching behavior of heavy metals from municipal solid wastes incineration (MSWI) fly ash used in concrete

2009 ◽  
Vol 164 (2-3) ◽  
pp. 750-754 ◽  
Author(s):  
Hui-Sheng Shi ◽  
Li-Li Kan
1997 ◽  
Vol 35 (8) ◽  
pp. 231-238 ◽  
Author(s):  
Tay Joo Hwa ◽  
S. Jeyaseelan

Conditioning of sludges improves dewatering characteristics and reduces the quantity of sludge to be handled. Anaerobic digested sludge collected from a sewage treatment plant contained 1.8% to 8% oil. The increase of specific resistance and capillary suction time (CST) with increasing oil content observed in these samples indicates the interference of oil in dewatering. It has been found that addition of municipal solid wastes incinerator fly ash decreases the specific resistances and capillary suction times of oily sludges rapidly up to 3% dosage. Beyond 3% fly ash, the decrease is less significant and the solids content in the sludge cake increases. This optimum dosage remains the same for sludges with varying oil contents from 1.8% to 12%. The total suspended solids of filtrate decreases with fly ash dosage but the toxic concentrations of heavy metals increases considerably. However at the optimum dosage of 3%, concentrations of heavy metals are within the limits for discharging into the sewers. The correlations of CST with the dewatering characteristics such as specific resistance, filter yield and corrected filter yield are established. These correlations can be used to obtain a quick prediction on dewaterability.


2008 ◽  
Vol 20 (11) ◽  
pp. 1398-1402 ◽  
Author(s):  
Yan ZHANG ◽  
Jianguo JIANG ◽  
Maozhe CHEN

2011 ◽  
Vol 414 ◽  
pp. 166-171 ◽  
Author(s):  
Si Chen Liu ◽  
Chang Sheng Jiang ◽  
Qing Ju Hao ◽  
Qing Ling Li ◽  
Yan Shi

The distributions in different particle sizes of municipal solid waste incinerator (MSWI) fly ash in spring and autumn were studied by sieve method, and the heavy metal contents of Cu, Zn, Mn, Pb, Cd, Ni, Cr and Hg in different size particles were measured, and the heavy metal leaching amount in the different particle size were also studied under the GB5085.3-2007 and USEPA-TCLP leaching procedure, respectively. The results showed that the particle size of fly ash in autumn was relatively smaller than that of in spring, more than 90% of particle size of fly ash in spring and autumn were less than 250 μm, and the particle size in 83-105 μm of fly ash in spring distributes in most with about 40% of the total, but 105-149 μm in autumn distributes in most, accounted for about 45% of the total. The content of heavy metals decreased first and then increased with the decreasing particle sizes except for Ni, and the content of heavy metals in the spring is higher than that of in autumn except for Fe and Zn. Under the GB5085.3-2007 leaching procedure, the leaching content of Cu, Zn and Ni in MSWI fly ash in both spring and autumn and Cr in spring were not beyond limited standard, but Pb and Cd in both spring and autumn and Cr in autumn were beyond limited standard. However, under TCLP leaching procedure, the leaching content of Pb, Cr and Cd in both spring and autumn were beyond the standard limits.


2011 ◽  
Vol 194-196 ◽  
pp. 2065-2071
Author(s):  
Man Tong Jin ◽  
Cai Ju Huang ◽  
Zan Fang Jin

Fly ash from the municipal solid waste incineration (MSWI) which contains a small amount of heavy metals becomes a threat to human health and other living organisms once emitted into the environment, and has to be treated before disposal. This study focuses on the characteristics of the MSWI fly ash, which involve mineral composing, granularity distributing, specific surface area, pore diameter and pore volume of fly ash, leaching toxicity and chemical species of heavy metals. The experiment results confirm that the fly ashes are mainly composed of sylvite, halite, portlandite and calcium sulfate hydrate, with the the average particle diameter of 15.082 μm and the specific surface area of 4.290 m2/g, and the heavy metals such as Pb, Cu, Cr in the MSWI fly ash are mobile except Hg. This research provides critical information for appropriate MSWI fly ash treatment technology.


Sign in / Sign up

Export Citation Format

Share Document