Initial fuel temperature effects on burning rate of pool fire

2011 ◽  
Vol 188 (1-3) ◽  
pp. 369-374 ◽  
Author(s):  
Bing Chen ◽  
Shou-Xiang Lu ◽  
Chang-Hai Li ◽  
Quan-Sheng Kang ◽  
Vivien Lecoustre
2018 ◽  
Vol 31 (5) ◽  
pp. 436-449 ◽  
Author(s):  
Depeng Kong ◽  
Zhen Zhang ◽  
Ping Ping ◽  
Xu He ◽  
Hanbing Yang

2014 ◽  
Vol 51 (3) ◽  
pp. 707-721 ◽  
Author(s):  
Manhou Li ◽  
Shouxiang Lu ◽  
Jin Guo ◽  
Ruiyu Chen ◽  
Kwok-Leung Tsui

1999 ◽  
Vol 15 (6) ◽  
pp. 740-747 ◽  
Author(s):  
A. I. Atwood ◽  
T. L. Boggs ◽  
P. O. Curran ◽  
T. P. Parr ◽  
D. M. Hanson-Parr ◽  
...  

Author(s):  
Quanyi Liu ◽  
Wei Yao ◽  
Jiusheng Yin ◽  
Rui Yang ◽  
Hui Zhang

Airplane as one of the important transport vehicles in our life, its safety problem related to in-flight fire has attracted a wide-spread attention. The combustion behavior of the cabin fire in flight shows some special characteristics because of the high-altitude environment with low-pressure and low oxygen concentration. A low-pressure chamber of size 2 m×3 m×2 m has been built to simulate high-altitude environments, where multiple static pressures for pool fire tests can be configured in the range between standard atmospheric pressure 101.3KPa and 30KPa. Two different sizes of pool fires were tested. Then corresponding modeling were conducted by a LES code FDS V5.5 to examine the mechanism of pressure effect on the n-Heptane pool fire behavior. The burning of liquid fuel was modeled by a Clausius-Clapeyron relation based liquid pyrolysis model. The modeling data was validated against the experimental measurements. The mass burning rate of free-burning pool fire decreases with the decreasing of pressure, which was observed from the modeling to be due to the reduction of flame heat feedback to the fuel surface. Under low pressure, the fire plume temperature increases for the same burning rate. The mechanism of pressure effect on fire behavior was analyzed based on the modeling data.


Trudy NAMI ◽  
2021 ◽  
pp. 74-86
Author(s):  
G. G. Ter-Mkrtich'yan

Introduction (problem statement and relevance). Hydrocarbon emissions from vaporizationtank fuel contribute significantly to the total emissions of hazardous substances from vehicles equipped with spark ignition engines. To meet the established standards for limiting hydrocarbon emissions caused by evaporation, all modern vehicles use fuel vapor recovery systems, the optimal parameters of which require the availability and application of mathematical models and methods for their determination.The purpose of the research was to develop a model of vapor generation processes in the car fuel tank and a methodology for determining the main quantitative parameters of the vapor-air mixture.Methodology and research methods. The analysis of the processes of vapor generation in the fuel tank was carried out. It was shown that the mass of hydrocarbons generated in the steam space was directly proportional to its volume and did not depend on the amount of fuel in the tank.Scientific novelty and results. New analytical dependences of the vaporization amount on the saturated vapor pressure, barometric pressure, initial fuel temperature and fuel heating during parking have been obtained.Practical significance. A formula was obtained to estimate the temperature of gasoline boiling starting in the tank, depending on the altitude above sea level and the volatility of gasoline, determined by the pressure of saturated vapors. Using the new equations, the vaporization analysis in real situations (parking, idling, refueling, explosive concentration of vapors) was carried out.


Fuel ◽  
2020 ◽  
Vol 269 ◽  
pp. 117467 ◽  
Author(s):  
Xiangliang Tian ◽  
Chang Liu ◽  
Maohua Zhong ◽  
Congling Shi

2018 ◽  
Vol 33 (39) ◽  
pp. 1850233
Author(s):  
Md. Mehedi Hassan ◽  
K. M. Jalal Uddin Rumi ◽  
Md. Nazrul Islam Khan ◽  
Rajib Goswami

In this work, control rod worth, xenon (Xe) effect on reactivity and power defect have been measured by doing experiments in the BAEC TRIGA Mark-II research reactor (BTRR) and through established theoretical analysis. Firstly, to study the xenon-135 effect on reactivity, reactor is critical at 2.4 MW for several hours. Next, experiments have been performed at very low power (50 W) to avoid temperature effects. Moreover, for the power defect experiment, different increasing power level has been tested by withdrawing the control rods. Finally, it is concluded that the total control rods worth of the BAEC TRIGA Mark-II research reactor, as determined through this study, is enough to run the reactor at full power (3 MW) considering the xenon-135 and fuel temperature effects.


2020 ◽  
Author(s):  
Daisuke Kawano ◽  
Kentaro Tsukiji ◽  
Hiroki Saito ◽  
Dai Matsuda ◽  
Eriko Matsumura ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document