Improving the cyanide toxicity tolerance of anaerobic reactor: Microbial interactions and toxin reduction

2016 ◽  
Vol 315 ◽  
pp. 52-60 ◽  
Author(s):  
Pragya Gupta ◽  
S.Z. Ahammad ◽  
T.R. Sreekrishnan
2020 ◽  
Vol 48 (2) ◽  
pp. 399-409
Author(s):  
Baizhen Gao ◽  
Rushant Sabnis ◽  
Tommaso Costantini ◽  
Robert Jinkerson ◽  
Qing Sun

Microbial communities drive diverse processes that impact nearly everything on this planet, from global biogeochemical cycles to human health. Harnessing the power of these microorganisms could provide solutions to many of the challenges that face society. However, naturally occurring microbial communities are not optimized for anthropogenic use. An emerging area of research is focusing on engineering synthetic microbial communities to carry out predefined functions. Microbial community engineers are applying design principles like top-down and bottom-up approaches to create synthetic microbial communities having a myriad of real-life applications in health care, disease prevention, and environmental remediation. Multiple genetic engineering tools and delivery approaches can be used to ‘knock-in' new gene functions into microbial communities. A systematic study of the microbial interactions, community assembling principles, and engineering tools are necessary for us to understand the microbial community and to better utilize them. Continued analysis and effort are required to further the current and potential applications of synthetic microbial communities.


2018 ◽  
Vol 6 (2) ◽  
Author(s):  
Indriyati Indriyati

Seeding in Fixed Bed anaerobic reactor are infl uenced by several condition such as the growth rate total population of microbial, bacterial adaption to infl uent and the retention of biomass in reactor. The aim of this observation is to fi nd out the seeding and acclimation process in anaerobic process by using plastic as support material. Seeding and acclimatization process run smoothly can be seen from the increasing of infl uent or substrate and following by the increasing degradation of soluble COD, beside that the decreasing of VSS concentration indicates that microorganism are all ready fi x in support material, therefore reactor can be operated continuously and the acclimatization process can be stopped.Keywords : anaerobic seeding, acclimation anaerobic process


2012 ◽  
pp. 756-761 ◽  
Author(s):  
Miroslav Hutnan ◽  
Štefan Tóth ◽  
Igor Bodík ◽  
Nina Kolesárová ◽  
Michal Lazor ◽  
...  

The possibility of joint treatment of spent sugar beet pulp and wastewater from a sugar factory was studied in this work. Works focused on processing of spent sugar beet pulp separately or together with other substrates can be found in the literature. In the case of some sugar factories, which have spare capacity in the anaerobic reactor on an anaerobic-aerobic wastewater treatment plant, joint processing of spent sugar beet pulp and wastewater from the sugar factory might be an interesting option. The results of the operation of a pilot plant of an anaerobic reactor with a capacity of 3.5 m3 are discussed. Operation of the pilot plant confirmed the possibility of cofermentation of these materials. The organic loading rate achieved in the anaerobic reactor was higher than 6 kg/(m3·d) (COD), while more than half of the load was provided by spent sugar beet pulp. The addition of sugar beet pulp decreased the concentration of ammonia nitrogen in the anaerobic reactor and it was even necessary to add nitrogen. However, the nitrogen content in sludge water depends on the C:N ratio in the processed sugar beet pulp, therefore this knowledge cannot be generalized. About 1.5 to 2-fold biogas production can be expected from the cofermentation of wastewater with sugar beet pulp in an anaerobic reactor, compared with the biogas production from just wastewater treatment.


1994 ◽  
Vol 29 (12) ◽  
pp. 23-29 ◽  
Author(s):  
G. Voigtländer ◽  
E.-P. Kulle

The paper presents a small sewage treatment plant (package plant) operating without additional energy. Purification of sewage is achieved in a three-step process: sedimentation tank, anaerobic reactor and wastewater pond or aerobic reactor. The efficiency of the anaerobic reactor - in contrast to the efficiency of a common septic tank - is significantly increased by using fixed biomass systems. Further degradation of sewage compounds by adhering microorganisms occurs in pond or aerobic reactor. The bed for the aerobic biomass is made of a semipermeable plastic film and arranged in order to ensure simultaneous supply of oxygen. The three pilot plants are showing different results. The main aims of research i.e. lowering of operational costs, energy supply, minimizing of maintenance expenditure and cleaning work, reliability of degradation efficiency have been achieved so far for the anaerobic reactor.


1994 ◽  
Vol 29 (7) ◽  
pp. 153-156 ◽  
Author(s):  
D. Wedi ◽  
P. A. Wilderer

Most of the fundamental processes responsible for enhanced biological phosphorus removal (EBPR) were obtained through laboratory tests under defined conditions with pure or enriched cultures. Acinetobacter sp. was identified as the most important group of bacteria responsible for bio-P removal. Full scale data showed, however, that laboratory results do not match full scale results well enough. There is a lack of data on the effects of sub-optimal process conditions such as inadequate availability of volatile fatty acids (VFA), high nitrate recycle, storm water inflow or low temperatures. In this paper the results of full scale experiments on P-release are presented and compared with theoretical values. Measurements at a full scale Phoredox-system showed a surprisingly low P-release in the anaerobic reactor. Only 4 to 10% of the phosphorus in the activated sludge was released in the bulk liquid. With laboratory batch-tests, a maximum of 20% of the P in the sludge could be released. It is assumed that under the prevailing process conditions either the fraction of Acinetobacter sp. was very small, or bacteria other than Acinetobacter sp. were responsible for the P-removal, or most of the phosphorus was bound chemically but mediated by biological processes.


2019 ◽  
Author(s):  
Jihyun Kim ◽  
◽  
Chandler Noyes ◽  
Ambria Dell'Oro ◽  
Rebecca Tyne ◽  
...  

2019 ◽  
Vol 38 (4) ◽  
pp. 251-264 ◽  
Author(s):  
Jason M. Koontz ◽  
Blair C. R. Dancy ◽  
Cassandra L. Horton ◽  
Jonathan D. Stallings ◽  
Valerie T. DiVito ◽  
...  

There is overwhelming evidence that the microbiome must be considered when evaluating the toxicity of chemicals. Disruption of the normal microbial flora is a known effect of toxic exposure, and these disruptions may lead to human health effects. In addition, the biotransformation of numerous compounds has been shown to be dependent on microbial enzymes, with the potential for different host health outcomes resulting from variations in the microbiome. Evidence suggests that such metabolism of environmental chemicals by enzymes from the host's microbiota can affect the toxicity of that chemical to the host. Chemical-microbial interactions can be categorized into two classes: Microbiome Modulation of Toxicity (MMT) and Toxicant Modulation of the Microbiome (TMM). MMT refers to transformation of a chemical by microbial enzymes or metabolites to modify the chemical in a way that makes it more or less toxic. TMM is a change in the microbiota that results from a chemical exposure. These changes span a large magnitude of effects and may vary from microbial gene regulation, to inhibition of a specific enzyme, to the death of the microbes. Certain microbiomes or microbiota may become associated with different health outcomes, such as resistance or susceptibility to exposure to certain toxic chemicals, the ability to recover following a chemical-induced injury, the presence of disease-associated phenotypes, and the effectiveness of immune responses. Future work in toxicology will require an understanding of how the microbiome interacts with toxicants to fully elucidate how a compound will affect a diverse, real-world population.


Sign in / Sign up

Export Citation Format

Share Document