Reaction condition optimization and degradation pathway in wet oxidation of benzopyrazole revealed by computational and experimental approaches

2018 ◽  
Vol 351 ◽  
pp. 169-176 ◽  
Author(s):  
Yongbing Xie ◽  
Linbi Zhou ◽  
Hongbin Cao ◽  
Chenming Liu ◽  
Qingzhen Han ◽  
...  
2007 ◽  
Vol 15 (3) ◽  
pp. 453-457 ◽  
Author(s):  
Yongfei LI ◽  
Xuhui YAN ◽  
Guofang JIANG ◽  
Qiang LIU ◽  
Jianxin SONG ◽  
...  

2015 ◽  
Vol 12 (2) ◽  
pp. 149 ◽  
Author(s):  
Elliott G. Duncan ◽  
William A. Maher ◽  
Simon D. Foster

Environmental context In marine environments, inorganic arsenic present in seawater is transformed to organoarsenic species, mainly arsenoribosides in algae and arsenobetaine in animals. These transformations decrease the toxicity of arsenic, yet the fate of arsenoribosides and arsenobetaine when marine organisms decompose is unknown. We review the current literature on the degradation of these organoarsenic species in marine systems detailing the drivers behind their degradation, and also discuss the environmental relevance of laboratory-based experiments. Abstract Despite arsenoribosides and arsenobetaine (AB) being the major arsenic species in marine macro-algae and animals they have never been detected in seawater. In all studies reviewed arsenoribosides from marine macro-algae were degraded to thio-arsenoribosides, dimethylarsinoylethanol (DMAE), dimethylarsenate (DMA), methylarsenate (MA) with arsenate (AsV) the final product of degradation. The use of different macro-algae species and different experimental microcosms did not influence the arsenoriboside degradation pathway. The use of different experimental approaches, however, did influence the rate and extent at which arsenoriboside degradation occurred. This was almost certainly a function of the complexity of the microbial community within the microcosm, with greater complexity resulting in rapid and more complete arsenoriboside degradation. AB from decomposing animal tissues is degraded to trimethylarsine oxide (TMAO) or dimethylarsenoacetate (DMAA), DMA and finally AsV. The degradation of AB unlike arsenoribosides occurs via a dual pathway with environmental or microbial community variability influencing the pathway taken. The environmental validity of different experimental approaches used to examine the fate of organoarsenic species was also reviewed. It was evident that although liquid culture incubation studies are cheap and reproducible they lack the ability to culture representative microbial communities. Microcosm studies that include sand and sediment are more environmentally representative as they are a better simulation of marine ecosystems and are also likely to facilitate complex microbial communities. An added benefit of microcosm studies is that they are able to be run in parallel with field-based research to provide a holistic assessment of the degradation of organoarsenic species in marine environments.


2016 ◽  
Vol 73 (12) ◽  
pp. 2896-2903 ◽  
Author(s):  
Lin Wang ◽  
Xiaolin Zhang ◽  
Yongmei Li

Abstract A novel bacterial strain Klebsiella sp. Y1 was isolated from the soil of a constructed wetland, and it was identified based on the 16S rDNA sequence analysis. The co-metabolic degradation of nicosulfuron with glucose by Klebsiella sp. Y1 was investigated. The response surface methodology analysis indicated that the optimal pH and temperature were 7.0 and 35 °C, respectively, for the degradation of nicosulfuron. Under the optimal conditions, the degradation of nicosulfuron fitted Haldane kinetics model well. The removal of nicosulfuron was triggered by the acidification of glucose, which accelerated the hydrolysis of nicosulfuron. Then, the C–N bond of the sulfonylurea bridge was attacked and cleaved. Finally, the detected intermediate 2-amino-4,6-dimethoxypyrimidine was further biodegraded.


2019 ◽  
Vol 48 (8) ◽  
pp. 961-964 ◽  
Author(s):  
Mikito Fujinami ◽  
Junji Seino ◽  
Takumi Nukazawa ◽  
Shintaro Ishida ◽  
Takeaki Iwamoto ◽  
...  

Author(s):  
Hyun Woo Kim ◽  
Sungwoo Lee ◽  
Gyoung S. Na ◽  
Seung Ju Han ◽  
Seok Ki Kim ◽  
...  

Chemical reactions typically have numerous controllable factors that need to be optimized to yield the desired products. Although traditional experimental methods are limited to explore possible combinations of these factors,...


2014 ◽  
Vol 222 (3) ◽  
pp. 148-153 ◽  
Author(s):  
Sabine Vits ◽  
Manfred Schedlowski

Associative learning processes are one of the major neuropsychological mechanisms steering the placebo response in different physiological systems and end organ functions. Learned placebo effects on immune functions are based on the bidirectional communication between the central nervous system (CNS) and the peripheral immune system. Based on this “hardware,” experimental evidence in animals and humans showed that humoral and cellular immune functions can be affected by behavioral conditioning processes. We will first highlight and summarize data documenting the variety of experimental approaches conditioning protocols employed, affecting different immunological functions by associative learning. Taking a well-established paradigm employing a conditioned taste aversion model in rats with the immunosuppressive drug cyclosporine A (CsA) as an unconditioned stimulus (US) as an example, we will then summarize the efferent and afferent communication pathways as well as central processes activated during a learned immunosuppression. In addition, the potential clinical relevance of learned placebo effects on the outcome of immune-related diseases has been demonstrated in a number of different clinical conditions in rodents. More importantly, the learned immunosuppression is not restricted to experimental animals but can be also induced in humans. These data so far show that (i) behavioral conditioned immunosuppression is not limited to a single event but can be reproduced over time, (ii) immunosuppression cannot be induced by mere expectation, (iii) psychological and biological variables can be identified as predictors for this learned immunosuppression. Together with experimental approaches employing a placebo-controlled dose reduction these data provide a basis for new therapeutic approaches to the treatment of diseases where a suppression of immune functions is required via modulation of nervous system-immune system communication by learned placebo effects.


Sign in / Sign up

Export Citation Format

Share Document