Enhanced in situ biodegradation of microplastics in sewage sludge using hyperthermophilic composting technology

2020 ◽  
Vol 384 ◽  
pp. 121271 ◽  
Author(s):  
Zhi Chen ◽  
Wenqi Zhao ◽  
Ruizhi Xing ◽  
Shengjia Xie ◽  
Xinggui Yang ◽  
...  
2020 ◽  
Vol 105 ◽  
pp. 317-327 ◽  
Author(s):  
Linbo Qin ◽  
Zhe Xu ◽  
Lei Liu ◽  
Haijun Lu ◽  
Yong Wan ◽  
...  

1982 ◽  
Vol 14 (3) ◽  
pp. 33-39
Author(s):  
C Y Kuo

An existing, three-dimensional, Eulerian-Lagrangian finite-difference model was modified and used to examine the far-field transport processes of dumped sewage sludge in the New York Bight. Both in situ and laboratory data were utilized in an attempt to approximate model inputs such as mean current speed, vertical and horizontal diffusion coefficients, particle size distributions, and specific gravities. Concentrations of the sludge near the sea surface predicted from the computer model were compared qualitatively with those remotely sensed.


RSC Advances ◽  
2015 ◽  
Vol 5 (52) ◽  
pp. 41867-41876 ◽  
Author(s):  
Yang Yu ◽  
Huangzhao Wei ◽  
Li Yu ◽  
Tong Zhang ◽  
Sen Wang ◽  
...  

Organic synthesis is used to investigate the degradation of m-cresol and the intermediates are identified by in situ NMR.


2021 ◽  
Author(s):  
Qinggeer BORJIGIN ◽  
Bizhou ZHANG ◽  
Xiaofang Yu ◽  
Julin Gao ◽  
Xin ZHANG ◽  
...  

Abstract A lignocellulolytic microbial consortium holds promise for the in situ biodegradation of crop straw and the comprehensive and effective utilization of agricultural waste. In this study, we applied metagenomics technology to comprehensively explore the metabolic functional potential and taxonomic diversity of the microbial consortia CS (cultured on corn stover) and FP (cultured on filter paper).Analyses of the metagenomics taxonomic affiliation data showed considerable differences in the taxonomic composition and functional profile of the microbial consortia CS and FP. The microbial consortia CS primarily contained members from the genera Pseudomonas, Stenotrophomonas, Achromobacter, Dysgonomonas, Flavobacterium and Sphingobacterium, as well as Cellvibrio, Azospirillum, Pseudomonas, Dysgonomonas and Cellulomonas in FP. The COG and KEGG annotation analyses revealed considerable levels of diversity. Further analysis determined that the CS consortium had an increase in the acid and ester metabolism pathways, while carbohydrate metabolism was enriched in the FP consortium. Furthermore, a comparison against the CAZy database showed that the microbial consortia CS and FP contain a rich diversity of lignocellulose degrading families, in which GH5, GH6, GH9, GH10, GH11, GH26, GH42, and GH43 were enriched in the FP consortium, and GH44, GH28, GH2, and GH29 increased in the CS consortium. The degradative mechanism of lignocellulose metabolism by the two microbial consortia is similar, but the annotation of quantity of genes indicated that they are diverse and vary greatly. The lignocellulolytic microbial consortia cultured under different carbon conditions (CS and FP) differed substantially in their composition of the microbial community at the genus level. The changes in functional diversity were accompanied with variation in the composition of microorganisms, many of which are related to the degradation of lignocellulolytic materials. The genera Pseudomonas, Dysgonomonas and Sphingobacterium in CS and the genera Cellvibrio and Pseudomonas in FP exhibited a much wider distribution of lignocellulose degradative ability.


2019 ◽  
Vol 148 ◽  
pp. 459-468 ◽  
Author(s):  
Leendert Vergeynst ◽  
Jan H. Christensen ◽  
Kasper Urup Kjeldsen ◽  
Lorenz Meire ◽  
Wieter Boone ◽  
...  

2016 ◽  
Vol 49 ◽  
pp. 212-220 ◽  
Author(s):  
Juanjuan Qi ◽  
Fenfen Zhu ◽  
Xiang Wei ◽  
Luyao Zhao ◽  
Yiqun Xiong ◽  
...  

10.5772/13298 ◽  
2011 ◽  
Author(s):  
Devault Damien ◽  
Delmotte Sbastien ◽  
Macarie Herv ◽  
Dolfing Jan ◽  
Anschutz Pierre

Sign in / Sign up

Export Citation Format

Share Document