catalytic wet peroxide oxidation
Recently Published Documents


TOTAL DOCUMENTS

213
(FIVE YEARS 60)

H-INDEX

37
(FIVE YEARS 9)

Author(s):  
Tiancheng Hun ◽  
Binxia Zhao ◽  
Tingting Zhu ◽  
Linxue Liu ◽  
Zhiliang Li ◽  
...  

Abstract The iron oxychloride/pillared montmorillonite (FeOCl/MMT) catalyst was prepared by wet impregnation method and solid melting method. Various characterization techniques were used to analyze the microscopic morphology and structure of a series of catalysts. Moreover, the catalysts were used to treat magenta simulated dye wastewater through catalytic wet peroxide oxidation (CWPO) degradation. The magenta removal rate and chemical oxygen demand (COD) removal rate of the magenta simulated dye wastewater were used to evaluate the catalytic performance of the catalyst, and the optimal catalyst preparation conditions were selected. The results showed that the solid melting method was more favorable to the preparation of the catalyst, and the COD removal rate of wastewater can reach 70.8% when the FeOCl load was 3%. Moreover, 96.2% of the magenta in the solution has been removed. The COD removal rate of the magenta wastewater decreased by only 12.4% after the catalyst was repeatedly used six times, indicating that the catalyst has good activity and stability. The Fermi equation can simulate the reaction process of the catalyst treating magenta wastewater at high temperature.


2021 ◽  
Vol 6 ◽  
pp. 100090
Author(s):  
Alicia L. Garcia-Costa ◽  
Jefferson E. Silveira ◽  
Juan A. Zazo ◽  
Dionysios D. Dionysiou ◽  
Jose A. Casas

Catalysts ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 514
Author(s):  
Ysabel Huaccallo-Aguilar ◽  
Silvia Álvarez-Torrellas ◽  
Johanny Martínez-Nieves ◽  
Jonathan Delgado-Adámez ◽  
María Victoria Gil ◽  
...  

Magnetite supported on multiwalled carbon nanotubes catalysts were synthesized by co-precipitation and hydrothermal treatment. The magnetic catalysts were characterized by X-ray diffraction, Fourier-transform infrared spectrometry, thermogravimetric analysis and N2 physisorption. The catalysts were then tested for their ability to remove diclofenac (DCF) and naproxen (NAP) from an aqueous solution at different conditions (pH, temperature, and hydrogen peroxide) to determine the optimum conditions for chemical oxidation. The optimization of the process parameters was conducted using response surface methodology (RSM) coupled with Box–Behnken design (BBD). By RSM–BBD methodology, the optimal parameters (1.75 mM H2O2 dosage, 70 °C and pH 6.5) were determined, and the removal percentages of NAP and DCF were 19 and 54%, respectively. The NAP–DCF degradation by catalytic wet peroxide oxidation (CWPO) was caused by •OH radicals. In CWPO of mixed drug solutions, DCF and NAP showed competitive oxidation. Hydrophobic interactions played an important role during the CWPO process. On the other hand, the magnetic catalyst reduced its activity after the second cycle of reuse. In addition, proof of concept and disinfection tests performed at the operating conditions showed results following the complexity of the water matrices. In this sense, the magnetic catalyst in CWPO has adequate potential to treat water contaminated with NAP–DCF mixtures.


Sign in / Sign up

Export Citation Format

Share Document