Cobalt (II) complex as a fluorescent sensing platform for the selective and sensitive detection of triketone HPPD inhibitors

2021 ◽  
Vol 404 ◽  
pp. 124015 ◽  
Author(s):  
Lu Li ◽  
Shuang Gao ◽  
Liu Yang ◽  
Yu-Long Liu ◽  
Ping Li ◽  
...  
2018 ◽  
Vol 90 (24) ◽  
pp. 14507-14513 ◽  
Author(s):  
Lili Tong ◽  
Xiuxiu Wang ◽  
Wen Gao ◽  
Zhenhua Liu ◽  
Zhenzhen Chen ◽  
...  

2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Anna Kanegae ◽  
Yusuke Takata ◽  
Ippei Takashima ◽  
Shohei Uchinomiya ◽  
Ryosuke Kawagoe ◽  
...  

AbstractDespite continuous and active development of fluorescent metal-ion probes, their molecular design for ratiometric detection is restricted by the limited choice of available sensing mechanisms. Here we present a multicolor and ratiometric fluorescent sensing platform for metal ions based on the interaction between the metal ion and the aromatic ring of a fluorophore (arene–metal-ion, AM, coordination). Our molecular design provided the probes possessing a 1,9-bis(2′-pyridyl)-2,5,8-triazanonane as a flexible metal ion binding unit attached to a tricyclic fluorophore. This architecture allows to sense various metal ions, such as Zn(II), Cu(II), Cd(II), Ag(I), and Hg(II) with emission red-shifts. We showed that this probe design is applicable to a series of tricyclic fluorophores, which allow ratiometric detection of the metal ions from the blue to the near-infrared wavelengths. X-ray crystallography and theoretical calculations indicate that the coordinated metal ion has van der Waals contact with the fluorophore, perturbing the dye’s electronic structure and ring conformation to induce the emission red-shift. A set of the probes was useful for the differential sensing of eight metal ions in a one-pot single titration via principal component analysis. We also demonstrate that a xanthene fluorophore is applicable to the ratiometric imaging of metal ions under live-cell conditions.


2013 ◽  
Vol 41 ◽  
pp. 442-445 ◽  
Author(s):  
Rong Hu ◽  
Ya-Ru Liu ◽  
Xiao-Bing Zhang ◽  
Weihong Tan ◽  
Guo-Li Shen ◽  
...  

2015 ◽  
Vol 3 (17) ◽  
pp. 3541-3547 ◽  
Author(s):  
Huaming Wang ◽  
Wei Tang ◽  
Hejia Wei ◽  
Yan Zhao ◽  
Shichao Hu ◽  
...  

A fluorescent dye-intercalated DNA dendrimer probe was integrated with electrospun nanofibers to create an amplified sensing platform for disease-related species.


Sign in / Sign up

Export Citation Format

Share Document