Tailored design of three-dimensional rGOA-nZVI catalyst as an activator of persulfate for degradation of organophosphorus pesticides

2022 ◽  
pp. 128254
Author(s):  
Mingyi Fan ◽  
Peng Zhang ◽  
Cuiping Wang ◽  
Jingchun Tang ◽  
Hongwen Sun
2019 ◽  
Vol 11 (18) ◽  
pp. 2428-2434 ◽  
Author(s):  
Pei Dong ◽  
Bin Jiang ◽  
Jianbin Zheng

In this study, a novel acetylcholinesterase (AChE) biosensor for the detection of organophosphorus pesticides (OPs) was developed based on a film of gold nanoparticles/three-dimensional graphene (AuNPs/rGO).


RSC Advances ◽  
2018 ◽  
Vol 8 (19) ◽  
pp. 10277-10283 ◽  
Author(s):  
P. Sun ◽  
Y. L. Gao ◽  
C. Xu ◽  
Y. F. Lian

3D graphene aerogel fabricated via chemical reduction followed by freeze-drying treatment was used as SPE sorbent to extract OPPs from water sample.


Author(s):  
Maryam Salahinejad ◽  
Ehsan Zolfonoun ◽  
Jahan B. Ghasemi

A simple and strong model, based on an alignment independent three-dimensional quantitative- structure activity relationships (3D-QSAR), is developed for prediction of degradation half-life (DT50) of 47 organophosphorus pesticides in soil. Molecular descriptors derived from 3D molecular interaction fields (MIF) were calculated using the GRIND methodology. Fractional factorial design (FFD) applied to feature selection and modeling of the relationship between selected descriptors and DT50 data was achieved using partial least squares regression. Validation and reliability of the obtained model were checked by the prediction of external test set cross-validation and chance correlation. The value of the determination coefficient (R2) was 0.817 for leave-one-out cross-validation procedure. The R2 values for the training and test sets were 0.951 and 0.893 respectively. The obtained model confirmed that size and shape of the molecules as well as hydrophobic interactions are the main parameters influencing the degradation half-life of organophosphorus pesticides in soil.


1966 ◽  
Vol 25 ◽  
pp. 227-229 ◽  
Author(s):  
D. Brouwer

The paper presents a summary of the results obtained by C. J. Cohen and E. C. Hubbard, who established by numerical integration that a resonance relation exists between the orbits of Neptune and Pluto. The problem may be explored further by approximating the motion of Pluto by that of a particle with negligible mass in the three-dimensional (circular) restricted problem. The mass of Pluto and the eccentricity of Neptune's orbit are ignored in this approximation. Significant features of the problem appear to be the presence of two critical arguments and the possibility that the orbit may be related to a periodic orbit of the third kind.


Author(s):  
M. Boublik ◽  
W. Hellmann ◽  
F. Jenkins

The present knowledge of the three-dimensional structure of ribosomes is far too limited to enable a complete understanding of the various roles which ribosomes play in protein biosynthesis. The spatial arrangement of proteins and ribonuclec acids in ribosomes can be analysed in many ways. Determination of binding sites for individual proteins on ribonuclec acid and locations of the mutual positions of proteins on the ribosome using labeling with fluorescent dyes, cross-linking reagents, neutron-diffraction or antibodies against ribosomal proteins seem to be most successful approaches. Structure and function of ribosomes can be correlated be depleting the complete ribosomes of some proteins to the functionally inactive core and by subsequent partial reconstitution in order to regain active ribosomal particles.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Author(s):  
G. Stöffler ◽  
R.W. Bald ◽  
J. Dieckhoff ◽  
H. Eckhard ◽  
R. Lührmann ◽  
...  

A central step towards an understanding of the structure and function of the Escherichia coli ribosome, a large multicomponent assembly, is the elucidation of the spatial arrangement of its 54 proteins and its three rRNA molecules. The structural organization of ribosomal components has been investigated by a number of experimental approaches. Specific antibodies directed against each of the 54 ribosomal proteins of Escherichia coli have been performed to examine antibody-subunit complexes by electron microscopy. The position of the bound antibody, specific for a particular protein, can be determined; it indicates the location of the corresponding protein on the ribosomal surface.The three-dimensional distribution of each of the 21 small subunit proteins on the ribosomal surface has been determined by immuno electron microscopy: the 21 proteins have been found exposed with altogether 43 antibody binding sites. Each one of 12 proteins showed antibody binding at remote positions on the subunit surface, indicating highly extended conformations of the proteins concerned within the 30S ribosomal subunit; the remaining proteins are, however, not necessarily globular in shape (Fig. 1).


Sign in / Sign up

Export Citation Format

Share Document