scholarly journals Mechanics of heel-strike plantigrady in African apes

2020 ◽  
Vol 145 ◽  
pp. 102840
Author(s):  
Angel Zeininger ◽  
Daniel Schmitt ◽  
Roshna E. Wunderlich
Keyword(s):  
2021 ◽  
Vol 6 (1) ◽  
pp. 27
Author(s):  
Stefano Ghirardelli ◽  
Jessica L. Asay ◽  
Erika A. Leonardi ◽  
Tommaso Amoroso ◽  
Thomas P. Andriacchi ◽  
...  

Background: This study compares knee kinematics in two groups of patients who have undergone primary total knee arthroplasty (TKA) using two different modern designs: medially congruent (MC) and posterior-stabilized (PS). The aim of the study is to demonstrate only minimal differences between the groups. Methods: Ten TKA patients (4 PS, 6 MC) with successful clinical outcomes were evaluated through 3D knee kinematics analysis performed using a multicamera optoelectronic system and a force platform. Extracted kinematic data included knee flexion angle at heel-strike (KFH), peak midstance knee flexion angle (MSKFA), maximum and minimum knee adduction angle (KAA), and knee rotational angle at heel-strike. Data were compared with a group of healthy controls. Results: There were no differences in preferred walking speed between MC and PS groups, but we found consistent differences in knee function. At heel-strike, the knee tended to be more flexed in the PS group compared to the MC group; the MSKFA tended to be higher in the PS group compared to the MC group. There was a significant fluctuation in KAA during the swing phase in the PS group compared to the MC group, PS patients showed a higher peak knee flexion moment compared to MC patients, and the PS group had significantly less peak internal rotation moments than the MC group. Conclusions: Modern, third-generation TKA designs failed to reproduce normal knee kinematics. MC knees tended to reproduce a more natural kinematic pattern at heel-strike and during axial rotation, while PS knees showed better kinematics during mid-flexion.


Sensors ◽  
2021 ◽  
Vol 21 (8) ◽  
pp. 2727
Author(s):  
Hari Prasanth ◽  
Miroslav Caban ◽  
Urs Keller ◽  
Grégoire Courtine ◽  
Auke Ijspeert ◽  
...  

Gait analysis has traditionally been carried out in a laboratory environment using expensive equipment, but, recently, reliable, affordable, and wearable sensors have enabled integration into clinical applications as well as use during activities of daily living. Real-time gait analysis is key to the development of gait rehabilitation techniques and assistive devices such as neuroprostheses. This article presents a systematic review of wearable sensors and techniques used in real-time gait analysis, and their application to pathological gait. From four major scientific databases, we identified 1262 articles of which 113 were analyzed in full-text. We found that heel strike and toe off are the most sought-after gait events. Inertial measurement units (IMU) are the most widely used wearable sensors and the shank and foot are the preferred placements. Insole pressure sensors are the most common sensors for ground-truth validation for IMU-based gait detection. Rule-based techniques relying on threshold or peak detection are the most widely used gait detection method. The heterogeneity of evaluation criteria prevented quantitative performance comparison of all methods. Although most studies predicted that the proposed methods would work on pathological gait, less than one third were validated on such data. Clinical applications of gait detection algorithms were considered, and we recommend a combination of IMU and rule-based methods as an optimal solution.


Author(s):  
Charles Deltour ◽  
Bart Dingenen ◽  
Filip Staes ◽  
Kevin Deschamps ◽  
Giovanni A. Matricali

Background: Foot–ankle motion is affected by chronic ankle instability (CAI) in terms of altered kinematics. This study focuses on multisegmental foot–ankle motion and joint coupling in barefoot and taped CAI patients during the three subphases of stance at running. Methods: Foot segmental motion data of 12 controls and 15 CAI participants during running with a heel strike pattern were collected through gait analysis. CAI participants performed running trials in three conditions: barefoot running, and running with high-dye and low-dye taping. Dependent variables were the range of motion (RoM) occurring at the different inter-segment angles as well as the cross-correlation coefficients between predetermined segments. Results: There were no significant RoM differences for barefoot running between CAI patients and controls. In taped conditions, the first two subphases only showed RoM changes at the midfoot without apparent RoM reduction compared to the barefoot CAI condition. In the last subphase there was limited RoM reduction at the mid- and rearfoot. Cross-correlation coefficients highlighted a tendency towards weaker joint coupling in the barefoot CAI condition compared to the controls. Joint coupling within the taped CAI conditions did not show optimization compared to the barefoot CAI condition. Conclusions: RoM was not significantly changed for barefoot running between CAI patients and controls. In taped conditions, there was no distinct tendency towards lower mean RoM values due to the mechanical restraints of taping. Joint coupling in CAI patients was not optimized by taping.


1997 ◽  
Vol 13 (1) ◽  
pp. 66-75 ◽  
Author(s):  
Bart Van Gheluwe ◽  
Claire Madsen

Excessive rearfoot motion, especially in the frontal plane, is believed to be a major cause of overload injuries in running. The aim of this study was to determine the influence of fatigue on frontal rearfoot motion just before volitional abandonment during an exhaustive run on a treadmill. Rearfoot kinematics were recorded three-dimensionally and reconstructed in a frontal plane associated with the heel. Statistical analysis of the results suggested that exhaustion did not influence tibial varum substantially, except at first heel strike. However, maximal calcaneal eversion and subtalar pronation did increase significantly, while maximal pronation velocity accelerated to 100°/s more than at the start of the exhaustive run. Also, the results of this study suggest that the increase in rearfoot motion is directly affected by fatigue and not by a fatigue-induced increase in step length.


Sign in / Sign up

Export Citation Format

Share Document