Flash flood warning based on rainfall thresholds and soil moisture conditions: An assessment for gauged and ungauged basins

2008 ◽  
Vol 362 (3-4) ◽  
pp. 274-290 ◽  
Author(s):  
Daniele Norbiato ◽  
Marco Borga ◽  
Silvia Degli Esposti ◽  
Eric Gaume ◽  
Sandrine Anquetin
2018 ◽  
Vol 18 (1) ◽  
pp. 171-183 ◽  
Author(s):  
Deg-Hyo Bae ◽  
Moon-Hwan Lee ◽  
Sung-Keun Moon

Abstract. This paper presents quantitative criteria for flash flood warning that can be used to rapidly assess flash flood occurrence based on only rainfall estimates. This study was conducted for 200 small mountainous sub-catchments of the Han River basin in South Korea because South Korea has recently suffered many flash flood events. The quantitative criteria are calculated based on flash flood guidance (FFG), which is defined as the depth of rainfall of a given duration required to cause frequent flooding (1–2-year return period) at the outlet of a small stream basin and is estimated using threshold runoff (TR) and antecedent soil moisture conditions in all sub-basins. The soil moisture conditions were estimated during the flooding season, i.e., July, August and September, over 7 years (2002–2009) using the Sejong University Rainfall Runoff (SURR) model. A ROC (receiver operating characteristic) analysis was used to obtain optimum rainfall values and a generalized precipitation–area (P–A) curve was developed for flash flood warning thresholds. The threshold function was derived as a P–A curve because the precipitation threshold with a short duration is more closely related to basin area than any other variables. For a brief description of the P–A curve, generalized thresholds for flash flood warnings can be suggested for rainfall rates of 42, 32 and 20 mm h−1 in sub-basins with areas of 22–40, 40–100 and > 100 km2, respectively. The proposed P–A curve was validated based on observed flash flood events in different sub-basins. Flash flood occurrences were captured for 9 out of 12 events. This result can be used instead of FFG to identify brief flash flood (less than 1 h), and it can provide warning information to decision-makers or citizens that is relatively simple, clear and immediate.


2017 ◽  
Author(s):  
Deg-Hyo Bae ◽  
Moon-Hwan Lee ◽  
Seun-Keun Moon

Abstract. This paper presents quantitative criteria for flash flood warning that can be used to rapidly assess flash flood occurrence based on only rainfall estimates. This study was conducted for 200 small mountainous sub-catchments of the Han River basin in South Korea because South Korea has recently suffered many flash flood events with short duration. Flash Flood Guidance (FFG) was defined as the depth of rainfall of a given duration required to cause minor flooding at the outlet of a small stream basin and was estimated using threshold runoff (TR) and antecedent soil moisture conditions in all the sub-basins. The soil moisture conditions were estimated during the flooding season, i.e., July, August and September, over 7 years (2002~2009) using the Sejong University Rainfall Runoff (SURR) model. A ROC analysis was used to obtain optimum rainfall values and a generalized precipitation-area curve (P-A curve) was developed for flash flood warning thresholds. The threshold function was derived as P-A curve due to the reason that the precipitation threshold with short duration is highly related to basin area than any other variables. Generalized thresholds for flash flood warning were obtained for rainfall rates of 42, 32 and 20 mm/h in sub-basins with areas of 22~40 km2, 40~100 km2 and > 100 km2, respectively. The proposed P-A curve was validated based on actual flash flood events in different sub-basins, which showed the viability of the proposed criteria to capture actual flash floods using only the rainfall rate and area of a sub-basin. The key advantage of this method is possible to issue flash flood warnings without the need to run entire hydro-meteorological model chains in the region where the short-duration flash flood frequently occurred.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1061
Author(s):  
Thanh Thi Luong ◽  
Judith Pöschmann ◽  
Rico Kronenberg ◽  
Christian Bernhofer

Convective rainfall can cause dangerous flash floods within less than six hours. Thus, simple approaches are required for issuing quick warnings. The flash flood guidance (FFG) approach pre-calculates rainfall levels (thresholds) potentially causing critical water levels for a specific catchment. Afterwards, only rainfall and soil moisture information are required to issue warnings. This study applied the principle of FFG to the Wernersbach Catchment (Germany) with excellent data coverage using the BROOK90 water budget model. The rainfall thresholds were determined for durations of 1 to 24 h, by running BROOK90 in “inverse” mode, identifying rainfall values for each duration that led to exceedance of critical discharge (fixed value). After calibrating the model based on its runoff, we ran it in hourly mode with four precipitation types and various levels of initial soil moisture for the period 1996–2010. The rainfall threshold curves showed a very high probability of detection (POD) of 91% for the 40 extracted flash flood events in the study period, however, the false alarm rate (FAR) of 56% and the critical success index (CSI) of 42% should be improved in further studies. The proposed adjusted FFG approach has the potential to provide reliable support in flash flood forecasting.


2021 ◽  
Author(s):  
Nunziarita Palazzolo ◽  
David J. Peres ◽  
Enrico Creaco ◽  
Antonino Cancelliere

<p>Landslide triggering thresholds provide the rainfall conditions that are likely to trigger landslides, therefore their derivation is key for prediction purposes. Different variables can be considered for the identification of thresholds, which commonly are in the form of a power-law relationship linking rainfall event duration and intensity or cumulated event rainfall. The assessment of such rainfall thresholds generally neglects initial soil moisture conditions at each rainfall event, which are indeed a predisposing factor that can be crucial for the proper definition of the triggering scenario. Thus, more studies are needed to understand whether and the extent to which the integration of the initial soil moisture conditions with rainfall thresholds could improve the conventional precipitation-based approach. Although soil moisture data availability has hindered such type of studies, yet now this information is increasingly becoming available at the large scale, for instance as an output of meteorological reanalysis initiatives. In particular, in this study, we focus on the use of the ERA5-Land reanalysis soil moisture dataset. Climate reanalysis combines past observations with models in order to generate consistent time series and the ERA5-Land data actually provides the volume of water in soil layer at different depths and at global scale. Era5-Land project is, indeed, a global dataset at 9 km horizontal resolution in which atmospheric data are at an hourly scale from 1981 to present. Volumetric soil water data are available at four depths ranging from the surface level to 289 cm, namely 0-7 cm, 7-28 cm, 28-100 cm, and 100-289 cm. After collecting the rainfall and soil moisture data at the desired spatio-temporal resolution, together with the target data discriminating landslide and no-landslide events, we develop automatic triggering/non-triggering classifiers and test their performances via confusion matrix statistics. In particular, we compare the performances associated with the following set of precursors: a) event rainfall duration and depth (traditional approach), b) initial soil moisture at several soil depths, and c) event rainfall duration and depth and initial soil moisture at different depths. The approach is applied to the Oltrepò Pavese region (northern Italy), for which the historical observed landslides have been provided by the IFFI project (Italian landslides inventory). Results show that soil moisture may allow an improvement in the performances of the classifier, but that the quality of the landslide inventory is crucial.</p>


Landslides ◽  
2017 ◽  
Vol 15 (2) ◽  
pp. 273-282 ◽  
Author(s):  
Pablo Valenzuela ◽  
María José Domínguez-Cuesta ◽  
Manuel Antonio Mora García ◽  
Montserrat Jiménez-Sánchez

2019 ◽  
Vol 574 ◽  
pp. 276-287 ◽  
Author(s):  
Binru Zhao ◽  
Qiang Dai ◽  
Dawei Han ◽  
Huichao Dai ◽  
Jingqiao Mao ◽  
...  

Author(s):  
Maurizio Lazzari ◽  
Marco Piccarreta ◽  
Ram L. Ray ◽  
Salvatore Manfreda

Rainfall-triggered shallow landslide events have caused losses of human lives and millions of euros in damage to property in all parts of the world. The need to prevent such hazards combined with the difficulty of describing the geomorphological processes over regional scales led to the adoption of empirical rainfall thresholds derived from records of rainfall events triggering landslides. These rainfall intensity thresholds are generally computed, assuming that all events are not influenced by antecedent soil moisture conditions. Nevertheless, it is expected that antecedent soil moisture conditions may provide critical support for the correct definition of the triggering conditions. Therefore, we explored the role of antecedent soil moisture on critical rainfall intensity-duration thresholds to evaluate the possibility of modifying or improving traditional approaches. The study was carried out using 326 landslide events that occurred in the last 18 years in the Basilicata region (southern Italy). Besides the ordinary data (i.e., rainstorm intensity and duration), we also derived the antecedent soil moisture conditions using a parsimonious hydrological model. These data have been used to derive the rainfall intensity thresholds conditional on the antecedent saturation of soil quantifying the impact of such parameters on rainfall thresholds.


Water ◽  
2019 ◽  
Vol 11 (6) ◽  
pp. 1221 ◽  
Author(s):  
Wei Huang ◽  
Zhixian Cao ◽  
Minghai Huang ◽  
Wengang Duan ◽  
Yufang Ni ◽  
...  

Flash flooding is one of the most severe natural hazards and commonly occurs in mountainous and hilly areas. Due to the rapid onset of flash floods, early warnings are critical for disaster mitigation and adaptation. In this paper, a flash flood warning scheme is proposed based on hydrodynamic modelling and critical rainfall. Hydrodynamic modelling considers different rainfall and initial soil moisture conditions. The critical rainfall is calculated from the critical hazard, which is based on the flood flow depth and velocity. After the critical rainfall is calculated for each cell in the catchment, a critical rainfall database is built for flash flood warning. Finally, a case study is presented to show the operating procedure of the new flash flood warning scheme.


2020 ◽  
Author(s):  
Clàudia Abancó ◽  
Georgina L. Bennett ◽  
Adrian J. Matthews ◽  
Mark A. Matera ◽  
Fibor J. Tan

Abstract. In 2018, Typhoon Mangkhut (locally known as Typhoon Ompong) triggered thousands of landslides in the area of Itogon (Philippines). A landslide inventory of 1101 landslides over a 570 km2 area is used to study the geomorphological characteristics and land cover more prone to landsliding as well as the rainfall and soil moisture conditions that led to widespread failure. Landslides mostly occurred in slopes covered by wooded grassland in clayey materials, predominantly facing East–Southeast. The analysis of both satellite rainfall (GPM IMERG) and soil moisture (SMAP-L4) finds that, in addition to rainfall from the typhoon, soil water content plays an important role in the triggering mechanism. Rainfall associated with Typhoon Mangkhut is compared with 33 high intensity rainfall events that did not trigger regional landslide events in 2018 and with previously published rainfall thresholds. Results show that: (a) it was one of the most intense rainfall events in the year but not the highest, and (b) despite satellite data tending to underestimate intense rainfall, previous published regional and global thresholds are to be too low to discriminate between landslide triggering and non-triggering rainfall events. This work highlights the potential of satellite products for hazard assessment and early warning in areas of high landslide activity where ground-based data is scarce.


2010 ◽  
Vol 26 ◽  
pp. 45-48 ◽  
Author(s):  
J. C. Balasch ◽  
J. Tuset ◽  
J. L. Ruiz-Bellet

Abstract. The Santa Tecla flash flood, a very heavy event occurred in Tàrrega (Catalonia, NE Iberian Peninsula) in 1874, was reconstructed with hydraulic and hydrological modelling tools. The hydrograph obtained in a first stage and the basin soil moisture information ultimately allowed the estimation of the range of the rainstorm magnitude which caused the flash flood. The reconstruction of historical floods has proved useful to improve the flood probability analysis, especially in ungauged basins.


Sign in / Sign up

Export Citation Format

Share Document