Determination of vertical hydraulic conductivity of aquitards in a multilayered leaky system using water-level signals in adjacent aquifers

2013 ◽  
Vol 500 ◽  
pp. 170-182 ◽  
Author(s):  
Zhenjiao Jiang ◽  
Gregoire Mariethoz ◽  
Mauricio Taulis ◽  
Malcolm Cox
2013 ◽  
Vol 448-453 ◽  
pp. 3989-3992
Author(s):  
Xue Jiang ◽  
Xiu Juan Liang ◽  
Chang Lai Xiao ◽  
Chuan Du ◽  
Zhong Kai Wang

When the buried depth of water level is very large, the air compressor is used in pumping test. In the limited conditions, the value of the water level was not measured, but the recovery value of water level could be measured. In this case, the sp value of the water level drawdown was not able to be measured accurately when the pumping test stopped. So the hydraulic conductivity of aquifer could only be determined according to the linear graphic method of the water level recovery test. However, water level recovery characteristics of each period were not the same, and the raising rate of water level were not equal. Thus, there was a deviation when the hydraulic conductivity was solved with the linear graphic method. According to the existing data, the thesis combined the water level recovery fitting of the entire curve fitting with Dupuit formula of artesian well, determining the sp value and hydrogeological parameters of aquifer. After comprehensive analysis, the parameters obtained are more reasonable, which can provide a good reference for in-situ mining of oil shale in this area.


2009 ◽  
Vol 375 (3-4) ◽  
pp. 428-437 ◽  
Author(s):  
Jinxi Song ◽  
Xunhong Chen ◽  
Cheng Cheng ◽  
Deming Wang ◽  
Susan Lackey ◽  
...  

1990 ◽  
Vol 21 (2) ◽  
pp. 119-132 ◽  
Author(s):  
Johnny Fredericia

The background for the present knowledge about hydraulic conductivity of clayey till in Denmark is summarized. The data show a difference of 1-2 orders of magnitude in the vertical hydraulic conductivity between values from laboratory measurements and field measurements. This difference is discussed and based on new data, field observations and comparison with North American studies, it is concluded to be primarily due to fractures in the till.


Author(s):  
Guglielmo Federico Antonio Brunetti ◽  
Samuele De Bartolo ◽  
Carmine Fallico ◽  
Ferdinando Frega ◽  
Maria Fernanda Rivera Velásquez ◽  
...  

AbstractThe spatial variability of the aquifers' hydraulic properties can be satisfactorily described by means of scaling laws. The latter enable one to relate the small (typically laboratory) scale to the larger (typically formation/regional) ones, therefore leading de facto to an upscaling procedure. In the present study, we are concerned with the spatial variability of the hydraulic conductivity K into a strongly heterogeneous porous formation. A strategy, allowing one to identify correctly the single/multiple scaling of K, is applied for the first time to a large caisson, where the medium was packed. In particular, we show how to identify the various scaling ranges with special emphasis on the determination of the related cut-off limits. Finally, we illustrate how the heterogeneity enhances with the increasing scale of observation, by identifying the proper law accounting for the transition from the laboratory to the field scale. Results of the present study are of paramount utility for the proper design of pumping tests in formations where the degree of spatial variability of the hydraulic conductivity does not allow regarding them as “weakly heterogeneous”, as well as for the study of dispersion mechanisms.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1131
Author(s):  
Soonkie Nam ◽  
Marte Gutierrez ◽  
Panayiotis Diplas ◽  
John Petrie

This paper critically compares the use of laboratory tests against in situ tests combined with numerical seepage modeling to determine the hydraulic conductivity of natural soil deposits. Laboratory determination of hydraulic conductivity used the constant head permeability and oedometer tests on undisturbed Shelby tube and block soil samples. The auger hole method and Guelph permeameter tests were performed in the field. Groundwater table elevations in natural soil deposits with different hydraulic conductivity values were predicted using finite element seepage modeling and compared with field measurements to assess the various test results. Hydraulic conductivity values obtained by the auger hole method provide predictions that best match the groundwater table’s observed location at the field site. This observation indicates that hydraulic conductivity determined by the in situ test represents the actual conditions in the field better than that determined in a laboratory setting. The differences between the laboratory and in situ hydraulic conductivity values can be attributed to factors such as sample disturbance, soil anisotropy, fissures and cracks, and soil structure in addition to the conceptual and procedural differences in testing methods and effects of sample size.


Sign in / Sign up

Export Citation Format

Share Document