Determination of Hydrogeological Parameters of Aquifer Using the Air Compressor Pumping

2013 ◽  
Vol 448-453 ◽  
pp. 3989-3992
Author(s):  
Xue Jiang ◽  
Xiu Juan Liang ◽  
Chang Lai Xiao ◽  
Chuan Du ◽  
Zhong Kai Wang

When the buried depth of water level is very large, the air compressor is used in pumping test. In the limited conditions, the value of the water level was not measured, but the recovery value of water level could be measured. In this case, the sp value of the water level drawdown was not able to be measured accurately when the pumping test stopped. So the hydraulic conductivity of aquifer could only be determined according to the linear graphic method of the water level recovery test. However, water level recovery characteristics of each period were not the same, and the raising rate of water level were not equal. Thus, there was a deviation when the hydraulic conductivity was solved with the linear graphic method. According to the existing data, the thesis combined the water level recovery fitting of the entire curve fitting with Dupuit formula of artesian well, determining the sp value and hydrogeological parameters of aquifer. After comprehensive analysis, the parameters obtained are more reasonable, which can provide a good reference for in-situ mining of oil shale in this area.

Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Qingyu Xu ◽  
Guangcai Wang ◽  
Xiangyang Liang ◽  
Shen Qu ◽  
Zheming Shi ◽  
...  

The determination of changes in hydrogeological properties (e.g., permeability and specific storage) of aquifers disturbed by mining activity is significant to groundwater resource and ecological environment protection in coal mine areas. However, such parameters are difficult to continuously measure in situ using conventional hydrogeological methods, and their temporal changes associated with coal mining are not well understood. The response of well water level to Earth tides provides a unique probe to determine the in situ hydrogeological parameters and their variations. In this study, the tidal responses of well water level were employed to characterize the changes in hydrogeological parameters of the overburden aquifer induced by longwall mining in a coalfield, northwest China. Based on the long-term hourly recorded water level data, two analytical models were used to determine the temporal changes of permeability and specific storage of the overburden aquifer. The results showed that the hydrogeological parameters changed with the longwall coal face advance. When the longwall coal face approached the wells, the aquifer permeability increased several to dozens of times, and the response distance ranged from 80 m to 300 m. The specific storage decreased before the coal face reached wells and recovered after the coal face passed. The results of this study indicate that the hydrogeological parameter changes induced by coal mining are related to the location of the well relative to the coal face and the stress distribution in the overburden aquifer. This study revealed the changes in permeability and specific storage associated with the mining disturbance which could have great significance for quantitative assessment of the impact of mining on overburden aquifer.


Water ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 1131
Author(s):  
Soonkie Nam ◽  
Marte Gutierrez ◽  
Panayiotis Diplas ◽  
John Petrie

This paper critically compares the use of laboratory tests against in situ tests combined with numerical seepage modeling to determine the hydraulic conductivity of natural soil deposits. Laboratory determination of hydraulic conductivity used the constant head permeability and oedometer tests on undisturbed Shelby tube and block soil samples. The auger hole method and Guelph permeameter tests were performed in the field. Groundwater table elevations in natural soil deposits with different hydraulic conductivity values were predicted using finite element seepage modeling and compared with field measurements to assess the various test results. Hydraulic conductivity values obtained by the auger hole method provide predictions that best match the groundwater table’s observed location at the field site. This observation indicates that hydraulic conductivity determined by the in situ test represents the actual conditions in the field better than that determined in a laboratory setting. The differences between the laboratory and in situ hydraulic conductivity values can be attributed to factors such as sample disturbance, soil anisotropy, fissures and cracks, and soil structure in addition to the conceptual and procedural differences in testing methods and effects of sample size.


2007 ◽  
Vol 30 (2) ◽  
pp. 118-132
Author(s):  
Ana Carolina Lisbôa Barboza ◽  
Gerson Cardoso da Silva Jr ◽  
Claudio Limeira Mello

The present study aims for the characterization of the hydrogeological parameters of the Paleogenic fluvial deposits of Volta Redonda Geological Basin, through hydraulic conductivity determinations and grain sized analyses. The overall goal was to produce a hydrogeological data base applicable to the characterization of hydrofacies (interconnected sedimentary bodies with distinct hydraulic properties) and the modeling groundwater flow. The used methods used consisted of in situ permeability determinations (Guelph permeameters) and laboratory tests (variable head permeameter), besides grain size analyses carried out in each sedimentary facies in the study area. These sedimentary facies were characterized by Marques (2006) and belong to the Resende and Pinheiral formations. The permeameter results were coherent to the sedimentological characteristics. The Resende Formation sedimentary deposits are constituted by medium to fine sand with presence of argillaceous matrix and present moderate to very low hydraulic conductivity, varying between 10-4 to 10-8 cm/s, which indicates a poor reservoir. The Pinheiral Formation presents sandy layers with conglomeratic lenses, limited by small thickness pelitic intervals, with a very low permeability, with a hydraulic conductivity varying between 10-5 to 10-7 cm/s. The upper layer has the maximum permeability, around 10-3 cm/s. This formation presents a medium reservoir characteristics and it must be taken into consideration that the upper layer has as role in recharge to the aquifer. From the results of hydraulic conductivity, that varies from 10-8 to 10-3 cm/s for the Resende and Pinheiral formations, it is concluded that these deposits a low to medium hydraulic conductivity, explaining the low productivity of the water-bearing multilayered aquifer of Volta Redonda Basin.


Géotechnique ◽  
2012 ◽  
Vol 62 (3) ◽  
pp. 253-262 ◽  
Author(s):  
T. KOBAYASHI ◽  
H. ONOUE ◽  
S. OBA ◽  
N. YASUFUKU ◽  
K. OMINE

Soil Research ◽  
1965 ◽  
Vol 3 (1) ◽  
pp. 1 ◽  
Author(s):  
CW Rose ◽  
WR Stern ◽  
JE Drummond

A theory is presented to calculate hydraulic conductivity from successive measurements of water content profiles for soil in situ. With unsaturated soil, potential gradients are inferred using moisture characteristics, but with saturated soil these gradients must be measured directly. The weight of overburden can affect in situ soil water suction, and a method for determining this effect is given. The theory was applied to a soil profile with marked changes in moisture characteristics and texture, and conductivity was determined for several depths as a function of water content.


2015 ◽  
Vol 5 (1) ◽  
Author(s):  
Bong-Joo Lee ◽  
Ji-Hoon Lee ◽  
Heesung Yoon ◽  
Eunhee Lee

Sign in / Sign up

Export Citation Format

Share Document