Coupling SWAT and ANN models for enhanced daily streamflow prediction

2016 ◽  
Vol 533 ◽  
pp. 141-151 ◽  
Author(s):  
Navideh Noori ◽  
Latif Kalin
2006 ◽  
Vol 324 (1-4) ◽  
pp. 383-399 ◽  
Author(s):  
Wen Wang ◽  
Pieter H.A.J.M. Van Gelder ◽  
J.K. Vrijling ◽  
Jun Ma
Keyword(s):  

Author(s):  
S. Jiang ◽  
L. Ren ◽  
X. Yang ◽  
M. Ma ◽  
Y. Liu

Abstract. Modelling uncertainties (i.e. input errors, parameter uncertainties and model structural errors) inevitably exist in hydrological prediction. A lot of recent attention has focused on these, of which input error modelling, parameter optimization and multi-model ensemble strategies are the three most popular methods to demonstrate the impacts of modelling uncertainties. In this paper the Xinanjiang model, the Hybrid rainfall–runoff model and the HYMOD model were applied to the Mishui Basin, south China, for daily streamflow ensemble simulation and uncertainty analysis. The three models were first calibrated by two parameter optimization algorithms, namely, the Shuffled Complex Evolution method (SCE-UA) and the Shuffled Complex Evolution Metropolis method (SCEM-UA); next, the input uncertainty was accounted for by introducing a normally-distributed error multiplier; then, the simulation sets calculated from the three models were combined by Bayesian model averaging (BMA). The results show that both these parameter optimization algorithms generate good streamflow simulations; specifically the SCEM-UA can imply parameter uncertainty and give the posterior distribution of the parameters. Considering the precipitation input uncertainty, the streamflow simulation precision does not improve very much. While the BMA combination not only improves the streamflow prediction precision, it also gives quantitative uncertainty bounds for the simulation sets. The SCEM-UA calculated prediction interval is better than the SCE-UA calculated one. These results suggest that considering the model parameters' uncertainties and doing multi-model ensemble simulations are very practical for streamflow prediction and flood forecasting, from which more precision prediction and more reliable uncertainty bounds can be generated.


Water ◽  
2019 ◽  
Vol 11 (4) ◽  
pp. 709 ◽  
Author(s):  
Mohammad Rezaie-Balf ◽  
Sajad Fani Nowbandegani ◽  
S. Zahra Samadi ◽  
Hossein Fallah ◽  
Sina Alaghmand

Accurate prediction of daily streamflow plays an essential role in various applications of water resources engineering, such as flood mitigation and urban and agricultural planning. This study investigated a hybrid ensemble decomposition technique based on ensemble empirical mode decomposition (EEMD) and variational mode decomposition (VMD) with gene expression programming (GEP) and random forest regression (RFR) algorithms for daily streamflow simulation across three mountainous stations, Siira, Bilghan, and Gachsar, in Karaj, Iran. To determine the appropriate corresponding input variables with optimal lag time the partial auto-correlation function (PACF) and auto-correlation function (ACF) were used for streamflow prediction purpose. Calibration and validation datasets were separately decomposed by EEMD that eventually improved standalone predictive models. Further, the component of highest pass (IMF1) was decomposed by the VMD approach to breakdown the distinctive characteristic of the variables. Results suggested that the EEMD-VMD algorithm significantly enhanced model calibration. Moreover, the EEMD-VMD-RFR algorithm as a hybrid ensemble model outperformed better than other techniques (EEMD-VMD-GEP, RFR and GEP) for daily streamflow prediction of the selected gauging stations. Overall, the proposed methodology indicated the superiority of hybrid ensemble models compare to standalone in predicting streamflow time series particularly in case of high fluctuations and different patterns in datasets.


2018 ◽  
Vol 49 (6) ◽  
pp. 1724-1739 ◽  
Author(s):  
Ramesh S. V. Teegavarapu

Abstract Streamflow time series often provide valuable insights into the underlying physical processes that govern responses of any watershed to storm events. Patterns derived from time series based on repeated structures within these series can be beneficial for developing new or improved data-driven forecasting models. Data-driven models, artificial neural networks (ANN), are developed in the current study for streamflow prediction using input structures that are classified by geometrically similar patterns. A new modular and integrated ANN architecture that combines multiple ANN models, referred to as pattern-classified neural network (PCNN), is proposed, developed and investigated in this study. The PCNN relies on the development of several independent local models instead of one global data-driven prediction model. The PCNN models are evaluated for one step-ahead prediction of daily streamflows for Reed Creek and Little River, Virginia, and Elkhorn Creek, Kentucky in the United States. Results obtained from this study suggest that the use of these patterns has improved the performance of the neural networks in prediction. The improved performance of the PCNN models can be attributed to prior classification of data benefiting generalization abilities. PCNN model outputs can also provide an ensemble of forecasts that help quantify forecast uncertainty.


2018 ◽  
Author(s):  
Yingchun Huang ◽  
András Bárdossy ◽  
Ke Zhang

Abstract. As the most important input for rainfall-runoff models, precipitation is usually observed at specific sites on a daily or sub-daily time scale and requires interpolation for further application. This study aims to explore that for a given objective function, whether a higher temporal and spatial resolution of precipitation could provide an improvement in model performance. Four different gridded hourly and daily precipitation datasets, with a spatial resolution of 1 km * 1 km for the Baden-Wurttemberg state of Germany, were constructed using a combination of data from a dense network of daily rainfall stations and a less dense network of pluviometers with high temporal-resolution rainfall observations. Two different flavors of HBV models with different model structures, lumped and spatially distributed, were used to test the sensitivity of model performance on the spatial resolution of precipitation. For four selected mesoscale catchments located at the upstream region of Baden-Wurttemberg, these four precipitation datasets were used to simulate the daily discharges using both lumped and semi-distributed HBV models. Different possibilities of improving the accuracy of daily streamflow prediction were investigated. Three main results were obtained from this study: (1) a higher temporal resolution of precipitation improved the model performance if the observation density was high; (2) a combination of observed high temporal-resolution observations with disaggregated daily precipitation leads to a further improvement in the model performance; (3) for the present research, the increase of spatial resolution improved the performance of the model insubstantially or only marginally for most of the study catchments.


2009 ◽  
Vol 34 (10-12) ◽  
pp. 701-706 ◽  
Author(s):  
F. Viola ◽  
L.V. Noto ◽  
M. Cannarozzo ◽  
G. La Loggia

Sign in / Sign up

Export Citation Format

Share Document