scholarly journals Daily Streamflow Prediction for Khazir River Basin Using ARIMA and ANN Models

2020 ◽  
Vol 32 (3) ◽  
2021 ◽  
Author(s):  
Urmin Vegad ◽  
Vimal Mishra

<p>Ensemble Streamflow Prediction (ESP) is a widely used method in forecasting streamflow, particularly for extremely low or high flows. However, the incorporation of reservoir operations in using ensemble streamflow prediction has not been investigated till yet. We calibrated Variable Infiltration Capacity (VIC) model for daily streamflow for Narmada river basin at four stations (Sandia, Handia, Mandleshwar and Garudeshwar) considering the effect of four reservoirs (Bargi, Tawa, Indira Sagar and Sardar Sarovar). The model is well-calibrated for the selected river basin (R2>0.55) at all locations. Further, routing of streamflow is done considering the reservoir storage dynamics and operating rules. Input data for ensemble prediction is taken from all 16 members of the Extended Range Forecast System (ERFS) developed by Indian Institute of Tropical Meteorology (IITM) and implemented by India Meteorological Department (IMD). Post-processing of the results gave us probabilities of uncertainties associated with streamflow prediction using ERFS members. This study provides key information in predictions of streamflow by incorporating the reservoirs based on the ERFS ensemble members, which can be used to effectively mitigate life and property losses associated with extreme flows in rivers.</p>


Proceedings ◽  
2018 ◽  
Vol 7 (1) ◽  
pp. 24
Author(s):  
Iolanda Borzì ◽  
Brunella Bonaccorso ◽  
Aldo Fiori

A flow regime can be broadly categorized as either perennial, intermittent, or ephemeral, depending on whether the streamflow is continuous all year round, or ceasing for weeks or months each year. Various conceptual models are needed to capture the behavior of these different flow regimes, which reflect differences in the stream–groundwater hydrologic connection. As the hydrologic connection becomes more transient and a catchment’s runoff response more nonlinear, such as for intermittent streams, the need for explicit representation of the groundwater increases. In the present study, we investigated the connection between the Northern Etna groundwater system and the Alcantara River basin in Sicily, which is intermittent in the upstream, and perennial since the midstream, due to groundwater resurgence. To this end, we apply a modified version of IHACRES rainfall–runoff model, whose input data are a continuous series of concurrent daily streamflow, rainfall and temperature data. The structure of the model includes three different modules: (1) a nonlinear loss module that transforms precipitation to effective rainfall by considering the influence of temperature; (2) a linear module based on the classical convolution between effective rainfall and the unit hydrograph which is able to simulate the quick component of the runoff; and (3) a second nonlinear module that simulates the slow component of the runoff and that feeds the groundwater storage. From the sum of the quick and slow components (except for groundwater losses, representing the aquifer recharge), the total streamflow is derived. This model structure is applied separately to sub-basins showing different hydrology and land use. The model is calibrated at Mojo cross-section, where daily streamflow data are available. Point rainfall and temperature data are spatially averaged with respect to the considered sub-basins. Model calibration and validation are carried out for the period 1984–1986 and 1987–1988 respectively.


2018 ◽  
Vol 19 (9) ◽  
pp. 1467-1483 ◽  
Author(s):  
Sunghee Kim ◽  
Hossein Sadeghi ◽  
Reza Ahmad Limon ◽  
Manabendra Saharia ◽  
Dong-Jun Seo ◽  
...  

Abstract To issue early warnings for the public to act, for emergency managers to take preventive actions, and for water managers to operate their systems cost-effectively, it is necessary to maximize the time horizon over which streamflow forecasts are skillful. In this work, we assess the value of medium-range ensemble precipitation forecasts generated with the Hydrologic Ensemble Forecast Service (HEFS) of the U.S. National Weather Service (NWS) in increasing the lead time and skill of streamflow forecasts for five headwater basins in the upper Trinity River basin in north-central Texas. The HEFS uses ensemble mean precipitation forecasts from the Global Ensemble Forecast System (GEFS) of the National Centers for Environment Prediction (NCEP). For comparative evaluation, we verify ensemble streamflow forecasts generated with the HEFS forced by the GEFS forecast with those forced by the short-range quantitative precipitation forecasts (QPFs) from the NWS West Gulf River Forecast Center (WGRFC) based on guidance from the NCEP’s Weather Prediction Center. We also assess the benefits of postprocessing the raw ensemble streamflow forecasts and evaluate the impact of selected parameters within the HEFS on forecast quality. The results show that the use of medium-range precipitation forecasts from the GEFS with the HEFS extends the time horizon for skillful forecasting of mean daily streamflow by 1–3 days for significant events when compared with using only the 72-h River Forecast Center (RFC) QPF with the HEFS. The HEFS forced by the GEFS also improves the skill of two-week-ahead biweekly streamflow forecast by about 20% over climatological forecast for the largest 1% of the observed biweekly flow.


2019 ◽  
Vol 11 (3) ◽  
pp. 304 ◽  
Author(s):  
Xiongpeng Tang ◽  
Jianyun Zhang ◽  
Chao Gao ◽  
Gebdang Ruben ◽  
Guoqing Wang

Using hydrological simulation to evaluate the accuracy of satellite-based and reanalysis precipitation products always suffer from a large uncertainty. This study evaluates four widely used global precipitation products with high spatial and temporal resolutions [i.e., AgMERRA (AgMIP modern-Era Retrospective Analysis for Research and Applications), MSWEP (Multi-Source Weighted-Ensemble Precipitation), PERSIANN-CDR (Precipitation Estimation from Remotely Sensed Information using Artificial Neural Networks-Climate Data Record), and TMPA (Tropical Rainfall Measuring Mission 3B42 Version7)] against gauge observations with six statistical metrics over Mekong River Basin (MRB). Furthermore, the Soil and Water Assessment Tool (SWAT), a widely used semi-distributed hydrological model, is calibrated using different precipitation inputs. Both model performance and uncertainties of parameters and prediction have been quantified. The following findings were obtained: (1) The MSWEP and TMPA precipitation products have good accuracy with higher CC, POD, and lower ME and RMSE, and the AgMERRA precipitation estimates perform better than PERSIANN-CDR in this rank; and (2) out of the six different climate regions of MRB, all six metrics are worse than that in the whole MRB. The AgMERRA can better reproduce the occurrence and contributions at different precipitation densities, and the MSWEP has the best performance in Cwb, Cwa, Aw, and Am regions that belong to the low latitudes. (3) Daily streamflow predictions obtained using MSWEP precipitation estimates are better than those simulated by other three products in term of both the model performance and parameter uncertainties; and (4) although MSWEP better captures the precipitation at different intensities in different climatic regions, the performance can still be improved, especially in the regions with higher altitude.


2015 ◽  
Vol 47 (5) ◽  
pp. 1053-1068 ◽  
Author(s):  
Jiyun Song ◽  
Jun Xia ◽  
Liping Zhang ◽  
Zhi-Hua Wang ◽  
Hui Wan ◽  
...  

Streamflow information is of great significance for flood control, water resources utilization and management, ecological services, etc. Continuous streamflow prediction in ungauged basins remains a challenge, mainly due to data paucity and environmental changes. This study focuses on the modification of a nonlinear hydrological system approach known as the time variant gain model and the development of a regressive method based on the modified approach. This method directly correlates rainfall to runoff through physically based mathematical transformations without requiring additional information of evaporation or soil moisture. Also, it contains parsimonious parameters that can be derived from watershed properties. Both characteristics make this method suitable for practical uses in ungauged basins. The Huai River Basin of China was selected as the study area to test the regressive method. The results show that the proposed methodology provides an effective way to predict streamflow of ungauged basins with reasonable accuracy by incorporating regional watershed information (soil, land use, topography, etc.). This study provides a useful predictive tool for future water resources utilization and management for data-sparse areas or watersheds with environmental changes.


2008 ◽  
Vol 9 (1) ◽  
pp. 132-148 ◽  
Author(s):  
Andrew W. Wood ◽  
John C. Schaake

Abstract When hydrological models are used for probabilistic streamflow forecasting in the Ensemble Streamflow Prediction (ESP) framework, the deterministic components of the approach can lead to errors in the estimation of forecast uncertainty, as represented by the spread of the forecast ensemble. One avenue for correcting the resulting forecast reliability errors is to calibrate the streamflow forecast ensemble to match observed error characteristics. This paper outlines and evaluates a method for forecast calibration as applied to seasonal streamflow prediction. The approach uses the correlation of forecast ensemble means with observations to generate a conditional forecast mean and spread that lie between the climatological mean and spread (when the forecast has no skill) and the raw forecast mean with zero spread (when the forecast is perfect). Retrospective forecasts of summer period runoff in the Feather River basin, California, are used to demonstrate that the approach improves upon the performance of traditional ESP forecasts by reducing errors in forecast mean and improving spread estimates, thereby increasing forecast reliability and skill.


Sign in / Sign up

Export Citation Format

Share Document