Comparative study of soil erodibility and critical shear stress between loess and purple soils

2018 ◽  
Vol 558 ◽  
pp. 625-631 ◽  
Author(s):  
Hang Xing ◽  
Yu-han Huang ◽  
Xiao-yan Chen ◽  
Bang-lin Luo ◽  
Hong-xing Mi
Water ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3301
Author(s):  
Zhuoxin Chen ◽  
Mingming Guo ◽  
Wenlong Wang

The effects of vegetation restoration on soil erosion resistance of gully head, along a revegetation age gradient, remain poorly understood. Hence, we collected undisturbed soil samples from a slope farmland and four grasslands with different revegetation ages (3, 10, 18, 25 years) along gully heads. Then, these samples were used to obtain soil detachment rate of gully heads by the hydraulic flume experiment under five unit width flow discharges (2–6 m3 h). The results revealed that soil properties were significantly ameliorated and root density obviously increased in response to restoration age. Compared with farmland, soil detachment rate of revegetated gully heads decreased 35.5% to 66.5%, and the sensitivity of soil erosion of the gully heads to concentrated flow decreased with revegetation age. The soil detachment rate of gully heads was significantly related to the soil bulk density, soil disintegration rate, capillary porosity, saturated soil hydraulic conductivity, organic matter content and water stable aggregate. The roots of 0–0.5 and 0.5–1.0 mm had the highest benefit in reducing soil loss of gully head. After revegetation, soil erodibility of gully heads decreased 31.0% to 78.6%, and critical shear stress was improved by 1.2 to 4.0 times. The soil erodibility and critical shear stress would reach a stable state after an 18-years revegetation age. These results allow us to better evaluate soil vulnerability of gully heads to concentrated flow erosion and the efficiency of revegetation.


2022 ◽  
Vol 218 ◽  
pp. 105292
Author(s):  
Sanghyun Lee ◽  
Maria L. Chu ◽  
Jorge A. Guzman ◽  
Dennis C. Flanagan

2001 ◽  
Vol 38 (4) ◽  
pp. 796-808 ◽  
Author(s):  
Celestina Adu-Wusu ◽  
Ernest K Yanful ◽  
Mohammed H Mian

Flooding of tailings under shallow water covers is an effective method of decommissioning potentially acid generating mine tailings. The low diffusivity and solubility of oxygen in water are attractive features of this technology. However, wind-induced waves can resuspend flooded tailings and expose them to greater contact with dissolved oxygen, thereby increasing the potential for oxidation and acid generation. Field measurements of wind activity and waves under different water cover depths and associated resuspension for a mine tailings pond in Ontario are presented and discussed. The results show that wind speeds greater than 8 m/s above water covers that are shallower than 1 m create waves of height greater than 10 cm and bottom shear stresses greater than 0.2 Pa. Under these conditions the critical shear stress of the mine tailings was exceeded, resulting in erosion and subsequent resuspension.Key words: mine tailings, water cover, wind-induced waves, resuspension, wind speed, shear stress.


Author(s):  
Shinya NAKASHITA ◽  
Kyeongmin KIM ◽  
Yuki IMAMURA ◽  
Tadashi HIBINO

2021 ◽  
Vol 64 (2) ◽  
pp. 587-600
Author(s):  
Xiaojing Gao ◽  
Qiusheng Wang ◽  
Chongbang Xu ◽  
Ruilin Su

HighlightsErosion tests were performed to study the critical shear stress of cohesive soils and soil mixtures.Linear relationships were observed between critical shear stress and cohesion of cohesive soils.Mixture critical shear stress relates to noncohesive particle size and cohesive soil erodibility.A formula for calculating the critical shear stress of soil mixtures is proposed and verified.Abstract. The incipient motion of soil is an important engineering property that impacts reservoir sedimentation, stable channel design, river bed degradation, and dam breach. Due to numerous factors influencing the erodibility parameters, the study of critical shear stress (tc) of cohesive soils and soil mixtures is still far from mature. In this study, erosion experiments were conducted to investigate the influence of soil properties on the tc of remolded cohesive soils and cohesive and noncohesive soil mixtures with mud contents varying from 0% to 100% using an erosion function apparatus (EFA). For cohesive soils, direct linear relationships were observed between tc and cohesion (c). The critical shear stress for soil mixture (tcm) erosion increased monotonically with an increase in mud content (pm). The median diameter of noncohesive soil (Ds), the void ratio (e), and the organic content of cohesive soil also influenced tcm. A formula for calculating tcm considering the effect of pm and the tc of noncohesive soil and pure mud was developed. The proposed formula was validated using experimental data from the present and previous research, and it can reproduce the variation of tcm for reconstituted soil mixtures. To use the proposed formula to predict the tcm for artificial engineering problems, experimental erosion tests should be performed. Future research should further test the proposed formula based on additional experimental data. Keywords: Cohesive and noncohesive soil mixture, Critical shear stress, Erodibility, Mud content, Soil property.


Sign in / Sign up

Export Citation Format

Share Document