Multi-scale preferential flow processes in an urban streambed under variable hydraulic conditions

2019 ◽  
Vol 573 ◽  
pp. 168-179 ◽  
Author(s):  
Farzaneh MahmoodPoor Dehkordy ◽  
Martin A. Briggs ◽  
Frederick D. Day-Lewis ◽  
Kamini Singha ◽  
Ashton Krajnovich ◽  
...  
2020 ◽  
Vol 17 (164) ◽  
pp. 20200046 ◽  
Author(s):  
David Scheidweiler ◽  
Filippo Miele ◽  
Hannes Peter ◽  
Tom J. Battin ◽  
Pietro de Anna

The dispersal of organisms controls the structure and dynamics of populations and communities, and can regulate ecosystem functioning. Predicting dispersal patterns across scales is important to understand microbial life in heterogeneous porous environments such as soils and sediments. We developed a multi-scale approach, combining experiments with microfluidic devices and time-lapse microscopy to track individual bacterial trajectories and measure the overall breakthrough curves and bacterial deposition profiles: we, then, linked the two scales with a novel stochastic model. We show that motile cells of Pseudomonas putida disperse more efficiently than non-motile mutants through a designed heterogeneous porous system. Motile cells can evade flow-imposed trajectories, enabling them to explore larger pore areas than non-motile cells. While transported cells exhibited a rotation in response to hydrodynamic shear, motile cells were less susceptible to the torque, maintaining their body oriented towards the flow direction and thus changing the population velocity distribution with a significant impact on the overall transport properties. We also found, in a separate set of experiments, that if the suspension flows through a porous system already colonized by a biofilm, P. putida cells are channelled into preferential flow paths and the cell attachment rate is increased. These two effects were more pronounced for non-motile than for motile cells. Our findings suggest that motility coupled with heterogeneous flows can be beneficial to motile bacteria in confined environments as it enables them to actively explore the space for resources or evade regions with unfavourable conditions. Our study also underlines the benefit of a multi-scale approach to the study of bacterial dispersal in porous systems.


2016 ◽  
Author(s):  
Werner Kördel ◽  
Hans Egli ◽  
Michael Klein

1996 ◽  
Vol 6 (2) ◽  
pp. 107-110
Author(s):  
John S. Selker

Avoiding groundwater contamination from agricultural activities is possible only if the processes that control deep percolation are understood. The source of contaminant movement to groundwater is typically through preferential flow, processes by which the bulk soil is bypassed by some part of the infiltrating water. Three mechanisms give rise to preferential flow: fingered flow, funnel flow, and macropore flow. Fingered flow occurs in coarse-textured soils and can be minimized by starting with an initially well-wetted profile. Funnel flow is likely in layered soil profiles of silt or coarser-textured soil, in which avoiding slow overirrigation is critical. Macropore flow is observed in all structured soils in which maintaining irrigation rates well below the saturated conductivity of the soil is essential. These prescriptions are quite different than conventional recommendations, which fail to consider groundwater protection.


2017 ◽  
Author(s):  
Martin A. Briggs ◽  
◽  
Frederick D. Day-Lewis ◽  
Farzaneh Mahmood Poor Dehkordy ◽  
Jay Zarnetske ◽  
...  

2009 ◽  
Vol 13 (7) ◽  
pp. 1215-1233 ◽  
Author(s):  
T. Blume ◽  
E. Zehe ◽  
A. Bronstert

Abstract. Spatial patterns as well as temporal dynamics of soil moisture have a major influence on runoff generation. The investigation of these dynamics and patterns can thus yield valuable information on hydrological processes, especially in data scarce or previously ungauged catchments. The combination of spatially scarce but temporally high resolution soil moisture profiles with episodic and thus temporally scarce moisture profiles at additional locations provides information on spatial as well as temporal patterns of soil moisture at the hillslope transect scale. This approach is better suited to difficult terrain (dense forest, steep slopes) than geophysical techniques and at the same time less cost-intensive than a high resolution grid of continuously measuring sensors. Rainfall simulation experiments with dye tracers while continuously monitoring soil moisture response allows for visualization of flow processes in the unsaturated zone at these locations. Data was analyzed at different spacio-temporal scales using various graphical methods, such as space-time colour maps (for the event and plot scale) and binary indicator maps (for the long-term and hillslope scale). Annual dynamics of soil moisture and decimeter-scale variability were also investigated. The proposed approach proved to be successful in the investigation of flow processes in the unsaturated zone and showed the importance of preferential flow in the Malalcahuello Catchment, a data-scarce catchment in the Andes of Southern Chile. Fast response times of stream flow indicate that preferential flow observed at the plot scale might also be of importance at the hillslope or catchment scale. Flow patterns were highly variable in space but persistent in time. The most likely explanation for preferential flow in this catchment is a combination of hydrophobicity, small scale heterogeneity in rainfall due to redistribution in the canopy and strong gradients in unsaturated conductivities leading to self-reinforcing flow paths.


Geophysics ◽  
2020 ◽  
Vol 85 (3) ◽  
pp. A19-A23 ◽  
Author(s):  
Niklas Allroggen ◽  
Daniel Beiter ◽  
Jens Tronicke

Earth and environmental sciences rely on detailed information about subsurface processes. Whereas geophysical techniques typically provide highly resolved spatial images, monitoring subsurface processes is often associated with enormous effort and, therefore, is usually limited to point information in time or space. Thus, the development of spatial and temporal continuous field monitoring methods is a major challenge for the understanding of subsurface processes. We have developed a novel method for ground-penetrating-radar (GPR) reflection monitoring of subsurface flow processes under unsaturated conditions and applied it to a hydrological infiltration experiment performed across a periglacial slope deposit in northwest Luxembourg. Our approach relies on a spatial and temporal quasicontinuous data recording and processing, followed by an attribute analysis based on analyzing differences between individual time steps. The results demonstrate the ability of time-lapse GPR monitoring to visualize the spatial and temporal dynamics of preferential flow processes with a spatial resolution in the order of a few decimeters and temporal resolution in the order of a few minutes. We observe excellent agreement with water table information originating from different boreholes. This demonstrates the potential of surface-based GPR reflection monitoring to observe the spatiotemporal dynamics of water movements in the subsurface. It provides valuable, and so far not accessible, information for example in the field of hydrology and pedology that allows studying the actual subsurface processes rather than deducing them from point information.


2016 ◽  
Author(s):  
Lisa Angermann ◽  
Conrad Jackisch ◽  
Niklas Allroggen ◽  
Matthias Sprenger ◽  
Erwin Zehe ◽  
...  

Abstract. Preferential flow is omnipresent in natural systems. It links multiple scales from single pores to entire hillslopes and potentially influences the discharge dynamics of a catchment. However, there is still a lack of appropriate monitoring techniques and thus, process understanding. In this study, a promising combination of 2D time-lapse ground-penetrating radar (GPR) and soil moisture monitoring was used to observe preferential flow processes in highly structured soils during a hillslope-scale irrigation experiment. The 2D time-lapse GPR data were interpreted using structural similarity attributes, highlighting changes between individual time-lapse measurements. These changes are related to soil moisture variations in the subsurface. In combination with direct measurements of soil moisture, the spatial and temporal characteristics of the resulting patterns can give evidence about subsurface flow processes. The response dynamics at the hillslope were compared to the runoff response behavior of the headwater catchment. The experiment revealed a fast establishment of hillslope-scale connectivity despite unsaturated conditions, with high response velocities of up to 10−3 m s−1 or faster, and a high portion of mobile water. These processes substantially impact the overall catchment response behavior. While the presented approach is a good way to observe the temporal dynamics and general patterns, the spatial characteristics of small-scale preferential flow path could not be fully resolved.


1994 ◽  
Vol 163 (3-4) ◽  
pp. 203-216 ◽  
Author(s):  
A.H. Haria ◽  
A.C. Johnson ◽  
J.P. Bell ◽  
C.H. Batchelor

Sign in / Sign up

Export Citation Format

Share Document