Propagation from meteorological drought to hydrological drought under the impact of human activities: A case study in northern China

2019 ◽  
Vol 579 ◽  
pp. 124147 ◽  
Author(s):  
Yang Xu ◽  
Xuan Zhang ◽  
Xiao Wang ◽  
Zengchao Hao ◽  
Vijay P. Singh ◽  
...  
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yi Liu ◽  
Liliang Ren ◽  
Ye Zhu ◽  
Xiaoli Yang ◽  
Fei Yuan ◽  
...  

A case study on the evolution of hydrological drought in nonstationary environments is conducted over the Laohahe catchment in northern China. Using hydrometeorological observations during 1964–2009, meteorological and hydrological droughts are firstly analyzed with the threshold level method. Then, a comprehensive analysis on the changes within the catchment is conducted on the basis of hydrological variables and socioeconomic indices, and the whole period is divided into two parts: the undisturbed period (1964–1979) and the disturbed period (1980–2009). A separating framework is further introduced to distinguish droughts induced by different causes, that is, the naturalized drought and human-induced drought. Results showed that human activities are more inclined to play a negative role in aggravating droughts. Drought duration and deficit volume in naturalized conditions are amplified two to four times and three to eight times, respectively, when human activities are involved. For the two dry decades 1980s and 2000s, human activities have caused several consecutive drought events with rather long durations (up to 29 months). These results reflect the considerable impacts of human activities on hydrological drought, which could provide some theoretical support for local drought mitigation and water resources management.


2013 ◽  
Vol 93 (3) ◽  
pp. 145-157
Author(s):  
Nikola Ristic ◽  
Bogdan Lukic ◽  
Dejan Filipovic ◽  
Velimir Secerov

Developed transport network is a precondition for economic and tourism development of areas and largely follows and allows the development of human activities. If it is developing without plan, spontaneous and without coordination it may be a limit to the overall development. The aim of research was to define developmental basis for the revitalization, improvement and construction of transport infrastructure in the municipality of Negotin. The paper will present the mutual interaction and functional connectivity of planning solutions for development of transport infrastructure and development of economic and tourism, as well as the impact which planning solutions have on the evolvent of other spatial and city functions.


2018 ◽  
Author(s):  
Yang Jiao ◽  
Xing Yuan

Abstract. Assessment of changes in hydrological droughts at specific warming levels (e.g., 1.5 or 2 °C) is important for an adaptive water resources management with consideration of the 2015 Paris Agreement. However, most studies focused on the response of drought frequency to the warming and neglected other drought characteristics including severity. By using a semiarid watershed in northern China (i.e., Wudinghe) as an example, here we show less frequent but more severe hydrological drought events emerge at both 1.5 and 2 °C warming levels. We used meteorological forcings from eight Coupled Model Intercomparison Project Phase 5 climate models with four representative concentration pathways, to drive a newly developed land surface hydrological model to simulate streamflow, and analyzed historical and future hydrological drought characteristics based on the Standardized Streamflow Index. The Wudinghe watershed will reach the 1.5 °C (2 °C) warming level around 2006–2025 (2019–2038), with an increase of precipitation by 6 % (9 %) and runoff by 17 % (27 %) as compared to the baseline period (1986–2005). This results in a drop of drought frequency by 26 % (27 %). However, the drought severity will rise dramatically by 63 % (30 %), which is mainly caused by the increased variability of precipitation and evapotranspiration. The climate models contribute to more than 82 % of total uncertainties in the future projection of hydrological droughts. This study suggests that different aspects of hydrological droughts should be carefully investigated when assessing the impact of 1.5 and 2 °C warming.


Author(s):  
Lin Wang ◽  
Jianyun Zhang ◽  
Amgad Elmahdi ◽  
Zhangkang Shu ◽  
Yinghui Wu ◽  
...  

Abstract In the context of global warming and increasing human activities, the acceleration of the water cycle will increase the risk of basin drought. In this study, to analyze the spatial and temporal evolution characteristics of hydrological and meteorological droughts over the Hanjiang River Basin (HRB); the Standardized Precipitation Index (SPI) and Standardized Runoff Index (SRI) were selected and applied for the period 1961–2018. In addition, the cross-wavelet method was used to discuss the relationship between hydrological drought and meteorological droughts. The results and analysis indicated that: (1) the meteorological drought in the HRB showed a complex cyclical change trend of flood-drought-flood from 1961 to 2018. The basin drought began to intensify from 1990s and eased in 2010s. The characteristics of drought evolution in various regions are different based on scale. (2) During the past 58 years, the hydrological drought in the HRB has shown a significant trend of intensification, particularly in autumn season. Also, the hydrological droughts had occurred frequently since the 1990s, and there were also regional differences in the evolution characteristics of drought in various regions. (3) Reservoir operation reduces the frequency of extreme hydrological drought events. The effect of reducing the duration and intensity of hydrological drought events by releasing water from the reservoir is most obvious at Huangjiagang Station, which is the nearest to Danjiangkou Reservoir. (4) The hydrological drought and meteorological drought in the HRB have the strongest correlation on the yearly scale. After 1990, severe human activities and climate change are not only reduced the correlation between hydrological drought and meteorological drought in the middle and lower reaches of the basin, but also reduced the lag time between them. Among them, the hydrological drought in the upper reaches of the basin lags behind the meteorological drought by 1 month, and the hydrological drought in the middle and lower reaches of the basin has changed from 2 months before 1990 to 1 month lagging after 1990.


2020 ◽  
Vol 12 (11) ◽  
pp. 194
Author(s):  
Ivan Miguel Pires ◽  
Faisal Hussain ◽  
Nuno M. M. Garcia ◽  
Petre Lameski ◽  
Eftim Zdravevski

One class of applications for human activity recognition methods is found in mobile devices for monitoring older adults and people with special needs. Recently, many studies were performed to create intelligent methods for the recognition of human activities. However, the different mobile devices in the market acquire the data from sensors at different frequencies. This paper focuses on implementing four data normalization techniques, i.e., MaxAbsScaler, MinMaxScaler, RobustScaler, and Z-Score. Subsequently, we evaluate the impact of the normalization algorithms with deep neural networks (DNN) for the classification of the human activities. The impact of the data normalization was counterintuitive, resulting in a degradation of performance. Namely, when using the accelerometer data, the accuracy dropped from about 79% to only 53% for the best normalization approach. Similarly, for the gyroscope data, the accuracy without normalization was about 81.5%, whereas with the best normalization, it was only 60%. It can be concluded that data normalization techniques are not helpful in classification problems with homogeneous data.


Sign in / Sign up

Export Citation Format

Share Document