scholarly journals Investigating the role of antecedent SMAP satellite soil moisture, radar rainfall and MODIS vegetation on runoff production in an agricultural region

2019 ◽  
Vol 579 ◽  
pp. 124210 ◽  
Author(s):  
Navid Jadidoleslam ◽  
Ricardo Mantilla ◽  
Witold F. Krajewski ◽  
Radoslaw Goska
2019 ◽  
Author(s):  
Navid Jadidoleslam ◽  
Ricardo Mantilla ◽  
Witold F. Krajewski ◽  
Radoslaw Goska

Following results by Crow et al. (2017) [Geophys. Res. Lett. 44, 5495-5503] on the impact of antecedent soil moisture on runoff production, we investigate total runoff production during individual rainfall-runoff events in agricultural landscapes as a function of antecedent soil moisture, total rainfall, and vegetation cover for catchments with drainage areas ranging from 80-1000 km2 in the state of Iowa, USA. For our study, we use Enhanced SMAP soil moisture estimates, the MODIS enhanced vegetation index (EVI), gauge-corrected Stage IV radar rainfall, and USGS streamflow data. We analyze the event runoff ratio as a function of event-scale rainfall, antecedent SMAP soil moisture and soil-moisture-deficit-normalized rainfall for the events in a period from March 31, 2015 to October 31, 2018. Our goal is to confirm the relationships identified by Crow et al. (2017) in heavily managed agricultural landscapes and to refine some of their methodological steps to quantify the role of additional variables controlling runoff production. To this end, we define three different strategies to identify rainfall-runoff events and add a baseflow separation step to better insulate event scale stormflow runoff. We test the effects of antecedent soil moisture, rainfall, and vegetation on the event-scale runoff ratio. The antecedent SMAP soil moisture and event-scale rainfall are found to have significant predictive power in estimating event runoff ratio. Soil moisture deficit-normalized rainfall, introduced as the ratio of event-scale rainfall to available space in top soil before initiation of the event, exhibited a more distinct relationship with runoff ratio. The long-term analysis of runoff ratio, rainfall, and MODIS EVI indicated that, in an agricultural region, vegetation plays a significant role in determining event-scale runoff ratios. The methodology and outcome of our study have direct implications on real-time flood forecasting and long-term hydrologic assessments.


2007 ◽  
Vol 24 (2) ◽  
pp. 255-269 ◽  
Author(s):  
Sabine Philipps ◽  
Christine Boone ◽  
Estelle Obligis

Abstract Soil Moisture and Ocean Salinity (SMOS) was chosen as the European Space Agency’s second Earth Explorer Opportunity mission. One of the objectives is to retrieve sea surface salinity (SSS) from measured brightness temperatures (TBs) at L band with a precision of 0.2 practical salinity units (psu) with averages taken over 200 km by 200 km areas and 10 days [as suggested in the requirements of the Global Ocean Data Assimilation Experiment (GODAE)]. The retrieval is performed here by an inverse model and additional information of auxiliary SSS, sea surface temperature (SST), and wind speed (W). A sensitivity study is done to observe the influence of the TBs and auxiliary data on the SSS retrieval. The key role of TB and W accuracy on SSS retrieval is verified. Retrieval is then done over the Atlantic for two cases. In case A, auxiliary data are simulated from two model outputs by adding white noise. The more realistic case B uses independent databases for reference and auxiliary ocean parameters. For these cases, the RMS error of retrieved SSS on pixel scale is around 1 psu (1.2 for case B). Averaging over GODAE scales reduces the SSS error by a factor of 12 (4 for case B). The weaker error reduction in case B is most likely due to the correlation of errors in auxiliary data. This study shows that SSS retrieval will be very sensitive to errors on auxiliary data. Specific efforts should be devoted to improving the quality of auxiliary data.


2021 ◽  
Author(s):  
Tina Trautmann ◽  
Sujan Koirala ◽  
Nuno Carvalhais ◽  
Andreas Güntner ◽  
Martin Jung

Abstract. So far, various studies aimed at decomposing the integrated terrestrial water storage variations observed by satellite gravimetry (GRACE, GRACE-FO) with the help of large-scale hydrological models. While the results of the storage decomposition depend on model structure, little attention has been given to the impact of the way how vegetation is represented in these models. Although vegetation structure and activity represent the crucial link between water, carbon and energy cycles, their representation in large-scale hydrological models remains a major source of uncertainty. At the same time, the increasing availability and quality of Earth observation-based vegetation data provide valuable information with good prospects for improving model simulations and gaining better insights into the role of vegetation within the global water cycle. In this study, we use observation-based vegetation information such as vegetation indices and rooting depths for spatializing the parameters of a simple global hydrological model to define infiltration, root water uptake and transpiration processes. The parameters are further constrained by considering observations of terrestrial water storage anomalies (TWS), soil moisture, evapotranspiration (ET) and gridded runoff (Q) estimates in a multi-criteria calibration approach. We assess the implications of including vegetation on the simulation results, with a particular focus on the partitioning between water storage components. To isolate the effect of vegetation, we compare a model experiment with vegetation parameters varying in space and time to a baseline experiment in which all parameters are calibrated as static, globally uniform values. Both experiments show good overall performance, but including vegetation data led to even better performance and more physically plausible parameter values. Largest improvements regarding TWS and ET were seen in supply-limited (semi-arid) regions and in the tropics, whereas Q simulations improve mainly in northern latitudes. While the total fluxes and storages are similar, accounting for vegetation substantially changes the contributions of snow and different soil water storage components to the TWS variations, with the dominance of an intermediate water pool that interacts with the fast plant accessible soil moisture and the delayed water storage. The findings indicate the important role of deeper moisture storages as well as groundwater-soil moisture-vegetation interactions as a key to understanding TWS variations. We highlight the need for further observations to identify the adequate model structure rather than only model parameters for a reasonable representation and interpretation of vegetation-water interactions.


1999 ◽  
Vol 3 (1) ◽  
pp. 95-108 ◽  
Author(s):  
H. S. Wheater ◽  
T. J. Jolley ◽  
C. Onof ◽  
N. Mackay ◽  
R. E. Chandler

Abstract. Appropriate representation of hydrological processes within atmospheric General Circulation Models (GCMs) is important with respect to internal model dynamics (e.g. surface feedback effects on atmospheric fluxes, continental runoff production) and to simulation of terrestrial impacts of climate change. However, at the scale of a GCM grid-square, several methodological problems arise. Spatial disaggregation of grid-square average climatological parameters is required in particular to produce appropriate point intensities from average precipitation. Conversely, aggregation of land surface heterogeneity is necessary for grid-scale or catchment scale application. The performance of grid-based hydrological models is evaluated for two large (104km2) UK catchments. Simple schemes, using sub-grid average of individual land use at 40 km scale and with no calibration, perform well at the annual time-scale and, with the addition of a (calibrated) routing component, at the daily and monthly time-scale. Decoupling of hillslope and channel routing does not necessarily improve performance or identifiability. Scale dependence is investigated through application of distribution functions for rainfall and soil moisture at 100 km scale. The results depend on climate, but show interdependence of the representation of sub-grid rainfall and soil moisture distribution. Rainfall distribution is analysed directly using radar rainfall data from the UK and the Arkansas Red River, USA. Among other properties, the scale dependence of spatial coverage upon radar pixel resolution and GCM grid-scale, as well as the serial correlation of coverages are investigated. This leads to a revised methodology for GCM application, as a simple extension of current procedures. A new location-based approach using an image processing technique is then presented, to allow for the preservation of the spatial memory of the process.


Sign in / Sign up

Export Citation Format

Share Document