scholarly journals Role of soil moisture-atmosphere feedback during high temperature events in 2002 over Northeast Eurasia

Author(s):  
Enkhbat Erdenebat ◽  
Tomonori Sato
Author(s):  
M.I. Ariëns ◽  
V. Chlan ◽  
P. Novák ◽  
L.G.A. van de Water ◽  
A.I. Dugulan ◽  
...  

2003 ◽  
Vol 40 (11) ◽  
pp. 1611-1642 ◽  
Author(s):  
Donald R Lowe ◽  
Deena Braunstein

Slightly alkaline hot springs and geysers in Yellowstone National Park exhibit distinctive assemblages of high-temperature (>73 °C) siliceous sinter reflecting local hydrodynamic conditions. The main depositional zones include subaqueous pool and channel bottoms and intermittently wetted subaerial splash, surge, and overflow areas. Subaqueous deposits include particulate siliceous sediment and dendritic and microbial silica framework. Silica framework forms thin, porous, microbe-rich films coating subaqueous surfaces. Spicules with intervening narrow crevices dominate in splash zones. Surge and overflow deposits include pool and channel rims, columns, and knobs. In thin section, subaerial sinter is composed of (i) dark brown, nearly opaque laminated sinter deposited on surfaces that evaporate to dryness; (ii) clear translucent silica deposited subaqueously through precipitation driven by supersaturation; (iii) heterogeneous silica representing silica-encrusted microbial filaments and detritus; and (iv) sinter debris. Brownish laminations form the framework of most sinter deposited in surge and overflow zones. Pits and cavities are common architectural features of subaerial sinter and show concave-upward pseudo-cross-laminations and micro-unconformities developed through migration. Marked birefringence of silica deposited on surfaces that evaporate to dryness is probably a strain effect. Repeated wetting and evaporation, often to dryness, and capillary effects control the deposition, morphology, and microstructure of most high-temperature sinter outside of the fully subaqueous zone. Microbial filaments are abundant on and within high-temperature sinter but do not provide the main controls on morphology or structuring except in biofilms developed on subaqueous surfaces. Millimetre-scale lamination cyclicity in much high-temperature sinter represents annual layering and regular seasonal fluctuations in silica sedimentation.


2007 ◽  
Vol 24 (2) ◽  
pp. 255-269 ◽  
Author(s):  
Sabine Philipps ◽  
Christine Boone ◽  
Estelle Obligis

Abstract Soil Moisture and Ocean Salinity (SMOS) was chosen as the European Space Agency’s second Earth Explorer Opportunity mission. One of the objectives is to retrieve sea surface salinity (SSS) from measured brightness temperatures (TBs) at L band with a precision of 0.2 practical salinity units (psu) with averages taken over 200 km by 200 km areas and 10 days [as suggested in the requirements of the Global Ocean Data Assimilation Experiment (GODAE)]. The retrieval is performed here by an inverse model and additional information of auxiliary SSS, sea surface temperature (SST), and wind speed (W). A sensitivity study is done to observe the influence of the TBs and auxiliary data on the SSS retrieval. The key role of TB and W accuracy on SSS retrieval is verified. Retrieval is then done over the Atlantic for two cases. In case A, auxiliary data are simulated from two model outputs by adding white noise. The more realistic case B uses independent databases for reference and auxiliary ocean parameters. For these cases, the RMS error of retrieved SSS on pixel scale is around 1 psu (1.2 for case B). Averaging over GODAE scales reduces the SSS error by a factor of 12 (4 for case B). The weaker error reduction in case B is most likely due to the correlation of errors in auxiliary data. This study shows that SSS retrieval will be very sensitive to errors on auxiliary data. Specific efforts should be devoted to improving the quality of auxiliary data.


Sign in / Sign up

Export Citation Format

Share Document