Remote-sensing precipitation and temperature evaluation using soil and water assessment tool with multiobjective calibration in the Shiyang River Basin, Northwest China

2020 ◽  
Vol 590 ◽  
pp. 125416
Author(s):  
Gengxi Zhang ◽  
Xiaoling Su ◽  
Olusola O. Ayantobo ◽  
Kai Feng ◽  
Jing Guo
Author(s):  
Gengxi Zhang ◽  
Xiaoling Su ◽  
Olusola O. Ayantobo ◽  
Kai Feng ◽  
Jing Guo

Precipitation and temperature are significant inputs for hydrological models. Currently, many satellite and reanalysis precipitation and air temperature datasets exist at different spatio-temporal resolutions at a global and quasi-global scale. This study evaluated the performances of three open-access precipitation datasets (gauge-adjusted research-grade Global Satellite Mapping of Precipitation (GSMaP_Gauge), Climate Hazards Group Infrared Precipitation with Station data (CHIRPS), Climate Forecast System Reanalysis(CFSR)) and CFSR air temperature dataset in driving the Soil and Water Assessment Tool (SWAT) model required for the monthly simulation of streamflow in the upper Shiyang River Basin of northwest China. After a thorough comparison of six model scenarios with different combinations of precipitation and air temperature inputs, the following conclusions were drawn: (1) Although the precipitation products had similar spatial patterns, however, CFSR differs significantly by showing an overestimation; (2) CFSR air temperature yielded almost identical performance in the streamflow simulation than the measured air temperature from gauge stations; (3) among the three open-access precipitation datasets, CHIRPS produced the best performance. These results suggested that the CHIRPS precipitation and CFSR air temperature datasets which are available at high spatial resolution (0.05), could be a promising alternative open-access data source for streamflow simulation in the case of limited access to desirable gauge data in the data-scarce area.


Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 696 ◽  
Author(s):  
Naomi Cambien ◽  
Sacha Gobeyn ◽  
Indira Nolivos ◽  
Marie Anne Eurie Forio ◽  
Mijail Arias-Hidalgo ◽  
...  

Agricultural intensification has stimulated the economy in the Guayas River basin in Ecuador, but also affected several ecosystems. The increased use of pesticides poses a serious threat to the freshwater ecosystem, which urgently calls for an improved knowledge about the impact of pesticide practices in this study area. Several studies have shown that models can be appropriate tools to simulate pesticide dynamics in order to obtain this knowledge. This study tested the suitability of the Soil and Water Assessment Tool (SWAT) to simulate the dynamics of two different pesticides in the data scarce Guayas River basin. First, we set up, calibrated and validated the model using the streamflow data. Subsequently, we set up the model for the simulation of the selected pesticides (i.e., pendimethalin and fenpropimorph). While the hydrology was represented soundly by the model considering the data scare conditions, the simulation of the pesticides should be taken with care due to uncertainties behind essential drivers, e.g., application rates. Among the insights obtained from the pesticide simulations are the identification of critical zones for prioritisation, the dominant areas of pesticide sources and the impact of the different land uses. SWAT has been evaluated to be a suitable tool to investigate the impact of pesticide use under data scarcity in the Guayas River basin. The strengths of SWAT are its semi-distributed structure, availability of extensive online documentation, internal pesticide databases and user support while the limitations are high data requirements, time-intensive model development and challenging streamflow calibration. The results can also be helpful to design future water quality monitoring strategies. However, for future studies, we highly recommend extended monitoring of pesticide concentrations and sediment loads. Moreover, to substantially improve the model performance, the availability of better input data is needed such as higher resolution soil maps, more accurate pesticide application rate and actual land management programs. Provided that key suggestions for further improvement are considered, the model is valuable for applications in river ecosystem management of the Guayas River basin.


Author(s):  
Timketa Adula Duguma

Abstract: In this study the semi-distributed model SWAT (Soil and Water Assessment Tool), were applied to evaluate stream flow of Didessa sub basin, which is one of the major sub basins in Abay river basin of Ethiopia. The study evaluated the quality of observed meteorological and hydrological data, established SWAT hydrological model, identified the most sensitive parameters, evaluated the best distribution for flow and developed peak flow for major tributary in the sub basin. The result indicated that the SWAT model developed for the sub basin evaluated at multi hydro-gauging stations and its performance certain with the statistical measures, coefficient about determination (R2) and also Nash coefficient (NS) with values ranging 0.62 to 0.8 and 0.6 to 0.8 respectively at daily time scale. The values of R2 and NS increases at monthly time scale and found ranging 0.75 to 0.92 and 0.71 to 0.91 respectively. Sensitivity analysis is performed to identify parameters those were most sensitive for the sub basin. CN2, GWQMN, CH_K, ALPHA_BNK and LAT_TIME are the most sensitive parameters in the sub basin. Finally, the peak flow for 2-10000 returns periods were determined after the best probability distribution is identified in EasyFit computer program.


2013 ◽  
Vol 340 ◽  
pp. 942-946 ◽  
Author(s):  
Kai Xu ◽  
Hui Qing Peng

The Soil and Water Assessment Tool (SWAT) was used to simulate runoff yield in Tao River Basin on ArcView GIS platform. The main objective was to validate the performance of SWAT and the feasibility of this model as a simulator of runoff in a catchment. The investigation was conducted using a 6-year historical runoff record from 2001 to 2008 (2001-2004 for calibration and 2005-2008 for validation). The simulated monthly runoff matched the observed values satisfactorily, with Re was less than 20%, R2 > 0.78 and Nash-suttclife (Ens)>0.8 for both calibration and validation period at 4 hydrological stations. These indicated that the simulation of runoff was reasonable, reflecting the validity of SWAT model in Tao River Basin.


2014 ◽  
Vol 43 (1) ◽  
pp. 110-120 ◽  
Author(s):  
Shenglan Lu ◽  
Nagendra Kayastha ◽  
Hans Thodsen ◽  
Ann van Griensven ◽  
Hans Estrup Andersen

Sign in / Sign up

Export Citation Format

Share Document