scholarly journals Evaluation of Open Access Precipitation and Temperature Products Using SWAT in Shiyang River Basin, Northwest China

Author(s):  
Gengxi Zhang ◽  
Xiaoling Su ◽  
Olusola O. Ayantobo ◽  
Kai Feng ◽  
Jing Guo

Precipitation and temperature are significant inputs for hydrological models. Currently, many satellite and reanalysis precipitation and air temperature datasets exist at different spatio-temporal resolutions at a global and quasi-global scale. This study evaluated the performances of three open-access precipitation datasets (gauge-adjusted research-grade Global Satellite Mapping of Precipitation (GSMaP_Gauge), Climate Hazards Group Infrared Precipitation with Station data (CHIRPS), Climate Forecast System Reanalysis(CFSR)) and CFSR air temperature dataset in driving the Soil and Water Assessment Tool (SWAT) model required for the monthly simulation of streamflow in the upper Shiyang River Basin of northwest China. After a thorough comparison of six model scenarios with different combinations of precipitation and air temperature inputs, the following conclusions were drawn: (1) Although the precipitation products had similar spatial patterns, however, CFSR differs significantly by showing an overestimation; (2) CFSR air temperature yielded almost identical performance in the streamflow simulation than the measured air temperature from gauge stations; (3) among the three open-access precipitation datasets, CHIRPS produced the best performance. These results suggested that the CHIRPS precipitation and CFSR air temperature datasets which are available at high spatial resolution (0.05), could be a promising alternative open-access data source for streamflow simulation in the case of limited access to desirable gauge data in the data-scarce area.

2012 ◽  
Vol 16 (4) ◽  
pp. 1259-1267 ◽  
Author(s):  
Y. Luo ◽  
J. Arnold ◽  
P. Allen ◽  
X. Chen

Abstract. Baseflow is an important component in hydrological modeling. The complex streamflow recession process complicates the baseflow simulation. In order to simulate the snow and/or glacier melt dominated streamflow receding quickly during the high-flow period but very slowly during the low-flow period in rivers in arid and cold northwest China, the current one-reservoir baseflow approach in SWAT (Soil Water Assessment Tool) model was extended by adding a slow- reacting reservoir and applying it to the Manas River basin in the Tianshan Mountains. Meanwhile, a digital filter program was employed to separate baseflow from streamflow records for comparisons. Results indicated that the two-reservoir method yielded much better results than the one-reservoir one in reproducing streamflow processes, and the low-flow estimation was improved markedly. Nash-Sutcliff efficiency values at the calibration and validation stages are 0.68 and 0.62 for the one-reservoir case, and 0.76 and 0.69 for the two-reservoir case. The filter-based method estimated the baseflow index as 0.60, while the model-based as 0.45. The filter-based baseflow responded almost immediately to surface runoff occurrence at onset of rising limb, while the model-based responded with a delay. In consideration of watershed surface storage retention and soil freezing/thawing effects on infiltration and recharge during initial snowmelt season, a delay response is considered to be more reasonable. However, a more detailed description of freezing/thawing processes should be included in soil modules so as to determine recharge to aquifer during these processes, and thus an accurate onset point of rising limb of the simulated baseflow.


Water ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3243
Author(s):  
Qiang Wang ◽  
Jun Xia ◽  
Xiang Zhang ◽  
Dunxian She ◽  
Jie Liu ◽  
...  

The lack of meteorological observation data limits the hydro-climatic analysis and modeling, especially for the ungauged or data-limited regions, while satellite and reanalysis products can provide potential data sources in these regions. In this study, three daily products, including two satellite products (Tropic Rainfall Measuring Mission Multi-Satellite Precipitation Analysis, TMPA 3B42 and 3B42RT) and one reanalysis product (China Meteorological Assimilation Driving Datasets for the SWAT Model, CMADS), were used to assess the capacity of hydro-climatic simulation based on the statistical method and hydrological model in Ganjiang River Basin (GRB), a humid basin of southern China. CAMDS, TMPA 3B42 and 3B42RT precipitation were evaluated against ground-based observation based on multiple statistical metrics at different temporal scales. The similar evaluation was carried out for CMADS temperature. Then, eight scenarios were constructed into calibrating the Soil and Water Assessment Tool (SWAT) model and simulating streamflow, to assess their capacity in hydrological simulation. The results showed that CMADS data performed better in precipitation estimation than TMPA 3B42 and 3B42RT at daily and monthly scales, while worse at the annual scale. In addition, CMADS can capture the spatial distribution of precipitation well. Moreover, the CMADS daily temperature data agreed well with observations at meteorological stations. For hydrological simulations, streamflow simulation results driven by eight input scenarios obtained acceptable performance according to model evaluation criteria. Compared with the simulation results, the models driven by ground-based observation precipitation obtained the most accurate streamflow simulation results, followed by CMADS, TMPA 3B42 and 3B42RT precipitation. Besides, CMADS temperature can capture the spatial distribution characteristics well and improve the streamflow simulations. This study provides valuable insights for hydro-climatic application of satellite and reanalysis meteorological products in the ungauged or data-limited regions.


2011 ◽  
Vol 8 (6) ◽  
pp. 10397-10424 ◽  
Author(s):  
Y. Luo ◽  
J. Arnold ◽  
P. Allen ◽  
X. Chen

Abstract. Baseflow is an important component in hydrological modeling. Complex streamflow recession process complicates the baseflow simulation. In order to simulate the snow and/or glacier melt dominated streamflow receding quickly during high-flow period but very slowly during the low-flow period in rivers in arid and cold Northwest China, the current one-reservoir baseflow approach in SWAT (Soil Water Assessment Tool) model was extended by adding a slow reacting reservoir and applied to the Manas River basin in Tianshan Mountains. Meanwhile, a digital filter program was employed to separate baseflow from streamflow records for comparisons. Results indicated that the two-reservoir method yielded much better results than the one-reservoir one in reproducing streamflow processes, and the low-flow estimation was improved markedly. Nash-Sutcliff efficiency values at the calibration and validation stages are 0.68 and 0.62 for the one-reservoir case, and 0.76 and 0.69 for the two-reservoir case, respectively. The filter-based method estimated the baseflow index as 0.60, while the model-based as o.45. The filter-based baseflow responds almost immediately to surface runoff occurrence at onset of rising limb, while the model-based with a delay. In consideration of watershed surface storage retention and soil freezing/thawing effects on infiltration and recharge during initial snowmelt season, a delay response is considered to be more reasonable. However, a more detailed description of freezing/thawing processes should be included in soil modules so as to determine recharge to aquifer during these processes, and thus an accurate onset point of rising limb of the simulated baseflow.


Water ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1548
Author(s):  
Suresh Marahatta ◽  
Deepak Aryal ◽  
Laxmi Prasad Devkota ◽  
Utsav Bhattarai ◽  
Dibesh Shrestha

This study aims at analysing the impact of climate change (CC) on the river hydrology of a complex mountainous river basin—the Budhigandaki River Basin (BRB)—using the Soil and Water Assessment Tool (SWAT) hydrological model that was calibrated and validated in Part I of this research. A relatively new approach of selecting global climate models (GCMs) for each of the two selected RCPs, 4.5 (stabilization scenario) and 8.5 (high emission scenario), representing four extreme cases (warm-wet, cold-wet, warm-dry, and cold-dry conditions), was applied. Future climate data was bias corrected using a quantile mapping method. The bias-corrected GCM data were forced into the SWAT model one at a time to simulate the future flows of BRB for three 30-year time windows: Immediate Future (2021–2050), Mid Future (2046–2075), and Far Future (2070–2099). The projected flows were compared with the corresponding monthly, seasonal, annual, and fractional differences of extreme flows of the simulated baseline period (1983–2012). The results showed that future long-term average annual flows are expected to increase in all climatic conditions for both RCPs compared to the baseline. The range of predicted changes in future monthly, seasonal, and annual flows shows high uncertainty. The comparative frequency analysis of the annual one-day-maximum and -minimum flows shows increased high flows and decreased low flows in the future. These results imply the necessity for design modifications in hydraulic structures as well as the preference of storage over run-of-river water resources development projects in the study basin from the perspective of climate resilience.


2019 ◽  
Vol 23 (2) ◽  
pp. 1113-1144 ◽  
Author(s):  
Abolanle E. Odusanya ◽  
Bano Mehdi ◽  
Christoph Schürz ◽  
Adebayo O. Oke ◽  
Olufiropo S. Awokola ◽  
...  

Abstract. The main objective of this study was to calibrate and validate the eco-hydrological model Soil and Water Assessment Tool (SWAT) with satellite-based actual evapotranspiration (AET) data from the Global Land Evaporation Amsterdam Model (GLEAM_v3.0a) and from the Moderate Resolution Imaging Spectroradiometer Global Evaporation (MOD16) for the Ogun River Basin (20 292 km2) located in southwestern Nigeria. Three potential evapotranspiration (PET) equations (Hargreaves, Priestley–Taylor and Penman–Monteith) were used for the SWAT simulation of AET. The reference simulations were the three AET variables simulated with SWAT before model calibration took place. The sequential uncertainty fitting technique (SUFI-2) was used for the SWAT model sensitivity analysis, calibration, validation and uncertainty analysis. The GLEAM_v3.0a and MOD16 products were subsequently used to calibrate the three SWAT-simulated AET variables, thereby obtaining six calibrations–validations at a monthly timescale. The model performance for the three SWAT model runs was evaluated for each of the 53 subbasins against the GLEAM_v3.0a and MOD16 products, which enabled the best model run with the highest-performing satellite-based AET product to be chosen. A verification of the simulated AET variable was carried out by (i) comparing the simulated AET of the calibrated model to GLEAM_v3.0b AET, which is a product that has different forcing data than the version of GLEAM used for the calibration, and (ii) assessing the long-term average annual and average monthly water balances at the outlet of the watershed. Overall, the SWAT model, composed of the Hargreaves PET equation and calibrated using the GLEAM_v3.0a data (GS1), performed well for the simulation of AET and provided a good level of confidence for using the SWAT model as a decision support tool. The 95 % uncertainty of the SWAT-simulated variable bracketed most of the satellite-based AET data in each subbasin. A validation of the simulated soil moisture dynamics for GS1 was carried out using satellite-retrieved soil moisture data, which revealed good agreement. The SWAT model (GS1) also captured the seasonal variability of the water balance components at the outlet of the watershed. This study demonstrated the potential to use remotely sensed evapotranspiration data for hydrological model calibration and validation in a sparsely gauged large river basin with reasonable accuracy. The novelty of the study is the use of these freely available satellite-derived AET datasets to effectively calibrate and validate an eco-hydrological model for a data-scarce catchment.


Author(s):  
Xuelei Zhang ◽  
Weihua Xiao ◽  
Yicheng Wang ◽  
Yan Wang ◽  
Miaoye Kang ◽  
...  

Abstract This paper focuses on determining the spatial and temporal characteristics of the sensitivity coefficients (SCs) between potential evapotranspiration (ET0) and key climatic factors across the Shiyang River Basin (SYRB) from 1981 to 2015. Penman–Monteith equation and a sensitivity analysis were used to calculate ET0 and the SCs for key climatic factors. Sen's slope was used to analyze the observed series. According to the results, the sensitivity significances were in the order of relative humidity (RH) > net solar radiation (NSR) > wind speed (WS) > maximum air temperature (Tmax) > minimum air temperature (Tmin). The SCs for the RH and NSR were larger in the upper mountainous region, while the other three coefficients were larger in the middle and lower reaches. All five climatic factors for the ET0 SCs showed increasing trends in the mountainous region, and the Tmax, WS and RH SCs increased in the middle and lower reaches. Over the past 35 years, the change in ET0 was dominated by the air temperature (T), RH and NSR, and the increase in ET0 during the studied period was mainly due to the increases in T and NSR.


2019 ◽  
Vol 11 (4) ◽  
pp. 980-991 ◽  
Author(s):  
Aidi Huo ◽  
Xiaofan Wang ◽  
Yan Liang ◽  
Cheng Jiang ◽  
Xiaolu Zheng

Abstract The likelihood of future global water shortages is increasing and further development of existing operational hydrologic models is needed to maintain sustainable development of the ecological environment and human health. In order to quantitatively describe the water balance factors and transformation relations, the objective of this article is to develop a distributed hydrologic model that is capable of simulating the surface water (SW) and groundwater (GW) in irrigation areas. The model can be used as a tool for evaluating the long-term effects of water resource management. By coupling the Soil and Water Assessment Tool (SWAT) and MODFLOW models, a comprehensive hydrological model integrating SW and GW is constructed. The hydrologic response units for the SWAT model are exchanged with cells in the MODFLOW model. Taking the Heihe River Basin as the study area, 10 years of historical data are used to conduct an extensive sensitivity analysis on model parameters. The developed model is run for a 40-year prediction period. The application of the developed coupling model shows that since the construction of the Heihe reservoir, the average GW level in the study area has declined by 6.05 m. The model can accurately simulate and predict the dynamic changes in SW and GW in the downstream irrigation area of Heihe River Basin and provide a scientific basis for water management in an irrigation district.


Sign in / Sign up

Export Citation Format

Share Document