APPLICATION OF SOIL AND WATER ASSESSMENT TOOL (SWAT) TO MODEL THE IMPACT OF PROGRESSIVE LAND-USE CHANGES ON SEDIMENT AND NUTRIENT FLUXES IN RIVANNA RIVER BASIN, VIRGINIA, USA

2017 ◽  
Author(s):  
Meghan King ◽  
◽  
Ben K. Odhiambo
Water ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 696 ◽  
Author(s):  
Naomi Cambien ◽  
Sacha Gobeyn ◽  
Indira Nolivos ◽  
Marie Anne Eurie Forio ◽  
Mijail Arias-Hidalgo ◽  
...  

Agricultural intensification has stimulated the economy in the Guayas River basin in Ecuador, but also affected several ecosystems. The increased use of pesticides poses a serious threat to the freshwater ecosystem, which urgently calls for an improved knowledge about the impact of pesticide practices in this study area. Several studies have shown that models can be appropriate tools to simulate pesticide dynamics in order to obtain this knowledge. This study tested the suitability of the Soil and Water Assessment Tool (SWAT) to simulate the dynamics of two different pesticides in the data scarce Guayas River basin. First, we set up, calibrated and validated the model using the streamflow data. Subsequently, we set up the model for the simulation of the selected pesticides (i.e., pendimethalin and fenpropimorph). While the hydrology was represented soundly by the model considering the data scare conditions, the simulation of the pesticides should be taken with care due to uncertainties behind essential drivers, e.g., application rates. Among the insights obtained from the pesticide simulations are the identification of critical zones for prioritisation, the dominant areas of pesticide sources and the impact of the different land uses. SWAT has been evaluated to be a suitable tool to investigate the impact of pesticide use under data scarcity in the Guayas River basin. The strengths of SWAT are its semi-distributed structure, availability of extensive online documentation, internal pesticide databases and user support while the limitations are high data requirements, time-intensive model development and challenging streamflow calibration. The results can also be helpful to design future water quality monitoring strategies. However, for future studies, we highly recommend extended monitoring of pesticide concentrations and sediment loads. Moreover, to substantially improve the model performance, the availability of better input data is needed such as higher resolution soil maps, more accurate pesticide application rate and actual land management programs. Provided that key suggestions for further improvement are considered, the model is valuable for applications in river ecosystem management of the Guayas River basin.


2021 ◽  
Vol 14 (2) ◽  
pp. 619
Author(s):  
Filipe Otávio Passos ◽  
Benedito Cláudio Da Silva ◽  
Fernando Das Graças Braga da Silva

Diversos processos naturais podem causar mudanças nos fluxos hidrológicos dentro de bacias hidrográficas, sendo estas ainda mais afetadas devido a ações antrópicas que mudem as suas características físicas, principalmente, o tipo e o uso do solo. Neste contexto, este trabalho apresenta uma calibração de um modelo de transformação chuva x vazão e posterior simulação para a estimativa das vazões na bacia hidrográfica do ribeirão José Pereira, em Itajubá, sul de Minas Gerais, utilizando o modelo distribuído Soil and Water Assessment Tool (Swat). Foram gerados cinco cenários de uso e ocupação do solo, que foram idealizados a partir de características observadas na bacia ou de tendências futuras de ocupação, a saber, o cenário do estado atual, de manejo do solo, de recuperação das áreas de preservação permanente (APPs) de margens de rios, de substituição total por floresta e de crescimento urbano. Os resultados indicam que o modelo Swat pode ser utilizado na simulação das componentes hidrológicas de bacias hidrográficas de pequeno porte, e ainda que o manejo agrícola e o reflorestamento da bacia são mais eficientes na diminuição do escoamento superficial do que a recuperação das APPs, chegando a uma diminuição de aproximadamente 40% nas vazões máximas simuladas. Impact Assessment of Changes in Land Use and Management on the Losses of the Water Source of the José Pereira Stream, Using the SWAT Model A B S T R A C TSeveral natural processes can cause changes in hydrological flows within hydrographic basins, which are even more affected due to anthropic actions that change their physical characteristics, mainly, the type and use of the soil. In this context, this work carries out an analysis of the impact on the flows of a small-scale hydrographic basin (River José Pereira) due to changes in land use and occupation, using the distributed model Soil and Water Assessment Tool (SWAT). Five land use and occupation scenarios were generated, which were designed based on characteristics observed in the basin or future occupation trends, namely, the current state scenario, soil management, recovery of permanent preservation areas (APPs) of river banks, total replacement by forest and urban growth. The results indicate that the SWAT model can be used in the simulation of the hydrological components of small hydrographic basins, and that agricultural management and reforestation of the basin are more efficient in reducing runoff than the recovery of APPs, reaching a decrease of approximately 40% in the maximum simulated flows.Keywords: hydrological modeling, rainfall, SWAT, land use and occupation.


2020 ◽  
Vol 14 (2) ◽  
pp. 154-161
Author(s):  
Diah Ainunisa ◽  
◽  
Gusfan Halik ◽  
Wiwik Yunarni Widiarti ◽  
◽  
...  

Population growth is one of the causes of land-use change that can increase runoff. Tanggul watershed is one of the watersheds which often overflows during the rainy season. This study purpose to analyze the effect of land-use changes on runoff in Tanggul watershed using SWAT (Soil and Water Assessment Tool) model. To make sure the performance of SWAT model calibration and classified by the value of NSE and R2. The result of calibration included in a good category and validation included in a very good category. This study was modeling forest land-use change in 2004-2017 to determine the effect of land-use change on runoff. The result in this model of forest land-use change can increase runoff.


2010 ◽  
Vol 62 (4) ◽  
pp. 783-791 ◽  
Author(s):  
Jing Fan ◽  
Fei Tian ◽  
Yonghui Yang ◽  
Shumin Han ◽  
Guoyu Qiu

Runoff in North China has been dramatically declining in recent decades. Although climate change and human activity have been recognized as the primary driving factors, the magnitude of impact of each of the above factors on runoff decline is still not entirely clear. In this study, Mian River Basin (a watershed that is heavily influenced by human activity) was used as a proxy to quantify the contributions of human and climate to runoff decline in North China. SWAT (Soil and Water Assessment Tool) model was used to isolate the possible impacts of man and climate. SWAT simulations suggest that while climate change accounts for only 23.89% of total decline in mean annual runoff, human activity accounts for the larger 76.11% in the basin. The gap between the simulated and measured runoff has been widening since 1978, which can only be explained in terms of increasing human activity in the region. Furthermore, comparisons of similar annual precipitation in 3 dry-years and 3 wet-years representing hydrological processes in the 1970s, 1980s, and 1990s were used to isolate the magnitude of runoff decline under similar annual precipitations. The results clearly show that human activity, rather than climate, is the main driving factor of runoff decline in the basin.


Water ◽  
2021 ◽  
Vol 13 (22) ◽  
pp. 3282
Author(s):  
Ji He ◽  
Yu-Rong Wan ◽  
Hai-Tao Chen ◽  
Wen-Chuan Wang

To reveal the influence process of land use changes on runoff variation trends, this paper takes the Luojiang River of China as the study area, and the Soil and Water Assessment Tool (SWAT) model was constructed to quantitatively analyze the impact of different land uses on runoff formation in the watershed, and used the Cellular Automata-Markov (CA-Markov) model to predict future land use scenarios and runoff change trends. The results show that: (1) the SWAT model can simulate the runoff in the Luojiang River basin; (2) the runoff in the Luojiang River basin has a decreasing trend in recent 10 years, caused by the decrease of rainfall and runoff due to changes in land use; (3) the forecast shows that the land-use changes in the basin will lead to an increase in runoff coefficient in 2025. The increase of the runoff coefficient will bring some adverse effects, and relevant measures should be taken to increase the water storage capacity of urban areas. This study can help plan future management strategies for the study area land coverage and put forward a preventive plan for the possible adverse situation of runoff variation.


Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 356
Author(s):  
Yuechao Chen ◽  
Makoto Nakatsugawa ◽  
Hiroki Ohashi

Landslides, debris flows, and other secondary disasters caused by earthquakes threaten the safety and stability of river basins. Earthquakes occur frequently in Japan. Therefore, it is necessary to study the impact of earthquakes on sediment transport in river basins. In this study, considering the influence of reservoirs, the Soil and Water Assessment Tool-calibration and uncertainty program (SWAT-CUP) was employed to analyze the runoff parameter sensitivity and to optimize the parameters. We manually corrected the sediment transport parameters after earthquake, using the Soil and Water Assessment Tool (SWAT) model to assess the process of runoff and sediment transport in the Atsuma River basin before and after the 2018 Hokkaido Eastern Iburi Earthquake. The applicability of the SWAT model to runoff simulation in the Atsuma River basin and the changes of sediment transport process after the earthquake were studied. The research results show that the SWAT model can accurately simulate the runoff process in the Atsuma River basin, the Nash–Sutcliffe efficiency coefficient (NSE) is 0.61 in the calibration period, and is 0.74 in the verification period. The sediment transport increased greatly after the earthquake and it is roughly estimated that the amount of sediment transport per unit rainfall increased from 3.5 tons/mm/year before the earthquake to 6.2 tons/mm/year after the earthquake.


RBRH ◽  
2017 ◽  
Vol 22 (0) ◽  
Author(s):  
Éverton Blainski ◽  
Eileen Andrea Acosta Porras ◽  
Luis Hamilton Pospissil Garbossa ◽  
Adilson Pinheiro

ABSTRACT Changes in the Earth’s landscape have been the focus of much environmental research. In this context, hydrological models stand out as tools for several assessments. This study aimed to use the Soil and Water Assessment Tool (SWAT) hydrological model to simulate the impact of changes in land use in the Camboriú River Watershed in the years 1957, 1978, and 2012. The results indicated that the SWAT model was efficient in simulating water flow and sediment transport processes. Thus, it was possible to evaluate the impact of different land use scenarios on water and sediment yield in the catchment. The changes in land use caused significant changes in the hydro-sedimentological dynamic. Regarding flow, the effects of land use changes were more pronounced at both ends of the curve representing duration of flow. The worst scenario was identified for the year 2012, which saw the highest peak discharges during flood events and lowest flows during the dry season. Concerning soil erosion, the highest values were identified for sub-basins that were predominantly covered by rice paddies and pastures; this was attributed mainly to surface runoff and changes in land use (represented by C-USLE). Overall, the Camboriú River Basin did not experience severe soil erosion issues; however, it was found that changes in land use related to soil and climate characteristics may increase soil degradation, especially in years with high precipitation levels.


Sign in / Sign up

Export Citation Format

Share Document