Ultrasound-assisted adsorption of Pb ions by carbonized/activated date stones from singles/mixed aqueous solutions

Author(s):  
Nora Sedira ◽  
Saliha Bouranene ◽  
Abdalhak Gheid
2021 ◽  
pp. 889-896
Author(s):  
Hanan J. Mustafa ◽  
Tagreed M. Al-Saadi

To study the removal of lead (Pb) ions from aqueous solutions, novel magnetite nanoparticles (NPs) of Ni0.31Mg0.15Ag0.04Fe2.5O4 were synthesized by coprecipitation synthesis using metal sulfates, and then coated with Gum Arabic (GA). The prepared NPs were analyzed using various spectroscopic and analytical methods, such as X-Ray diffraction analysis (XRD), Field Emission Scanning Electron Microscopy (FE-SEM), Energy Dispersive X-ray spectroscopy (EDX), Fourier Transform Infra-Red spectroscopy (FT-IR), and Atomic Absorption Spectrophotometer (AAS). By using XRD analysis, the cubic inverse spinel structure of the prepared NPs was proven, showing average values of crystallite size, lattice constant, and density of 28.57nm, 8.32582Å, and 5.2890 g/cm3, respectively. FE-SEM analysis revealed the sphere-like shape of the nanoparticles with a measured crystallite size of 25.93nm. The existence of constituent elements was evidenced by EDX. FT-IR test proved the success of the coating process of magnetite NPs by the presence of the main characteristic absorption bands of GA in the FT-IR spectrum of GA-magnetite NPs. The adsorption of Pb ions by GA- magnetite NPs was shown by AAS analysis, where the concentration of Pb ions decreased from 25ppm to 6.6ppm, reaching 1.1ppm at the time of 25min. The porosity of the NPs and the carboxyl groups in GA played an important role in the process.


RSC Advances ◽  
2015 ◽  
Vol 5 (70) ◽  
pp. 57021-57029 ◽  
Author(s):  
Mostafa Roosta ◽  
Mehrorang Ghaedi ◽  
Arash Asfaram

The present study investigates the simultaneous ultrasound-assisted adsorption of malachite green (MG) and safranin O (SO) dyes from aqueous solutions by ultrasound-assisted adsorption onto copper nanowires loaded on activated carbon (Cu-NWs-AC).


2017 ◽  
Vol 5 ◽  
pp. 253-260 ◽  
Author(s):  
Chi-Chuan Kan ◽  
Mario Jose R. Sumalinog ◽  
Kim Katrina P. Rivera ◽  
Renato O. Arazo ◽  
Mark Daniel G. de Luna

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2782 ◽  
Author(s):  
Jarosław Chwastowski ◽  
Dariusz Bradło ◽  
Witold Żukowski

The adsorption process of cadmium ions (Cd), manganese ions (Mn) and lead ions (Pb) onto the spent coffee grounds (SCG) and activated spent coffee grounds (biochar, A-SCG) was investigated. The SCG activation was carried out in the pyrolysis process in a fluidized bed reactor. scanning electron microscope (SEM) with energy dispersive X-ray spectroscopy (EDX), Fourier-transform infrared spectroscopy (FTIR), Brunauer–Emmett–Teller (BET) measurements and CHN analysis were used in order to define the differences between biomaterials. In the study the different mass of materials (0.2–0.5 g) and constant heavy metal volume and concentration (20 cm3/100 ppm) were investigated on the adsorption process. In order to describe the sorption parameters the Langmuir, Freundlich and Temkin isotherms were used. The maximum adsorption for biochar reached 22.3 mg/g for Pb ions, 19.6 mg/g for Mn ions and 19.4 mg/g for Cd ions which were noticeably higher than the results obtained for spent coffee grounds which reached 13.6 mg/g for Pb ions, 13.0 mg/g for Mn ions and 11.0 mg/g for Cd ions. Metal ion adsorption on both SCG and A-SCG was best described by the Langmuir model, thus chemisorption was a dominant type of adsorption. Studying the kinetics of the sorption process, one can see that the process is of a chemical nature according to the best fit of the pseudo-second rate order model. The obtained results show that the chosen sorbents can be used for the removal of cadmium, manganese and lead compounds from aqueous solutions with high efficiency.


Author(s):  
Kadda Hachem ◽  
Dmitry Bokov ◽  
Meysam Davoodabadi Farahani ◽  
Bentolhoda Mehdizade ◽  
Amir Abbas Kazemzadeh Farizhandi

Sign in / Sign up

Export Citation Format

Share Document