scholarly journals 129 Cutaneous T cell lymphoma tumor cells expanded in vitro retain expression of biomarker genes

2017 ◽  
Vol 137 (5) ◽  
pp. S22
Author(s):  
A. Moerman-Herzog ◽  
H.E. Field ◽  
H.K. Wong
Author(s):  
Amber Loren O. King ◽  
Fatima N. Mirza ◽  
Julia M. Lewis ◽  
Shiela Umlauf ◽  
Yulia Surosteva ◽  
...  

2020 ◽  
Author(s):  
Darci Phillips ◽  
Magdalena Matusiak ◽  
Belén Rivero Gutierrez ◽  
Salil S. Bhate ◽  
Graham L. Barlow ◽  
...  

Anti-PD-1 immunotherapies have transformed cancer treatment, yet the determinants of clinical response are largely unknown. We performed CODEX multiplexed tissue imaging and RNA sequencing on 70 tumor regions from 14 advanced cutaneous T cell lymphoma (CTCL) patients enrolled in a clinical trial of pembrolizumab therapy. Clinical response was not associated with the frequency of tumor-infiltrating T cell subsets, but rather with striking differences in the spatial organization and functional immune state of the tumor microenvironment (TME). After treatment, pembrolizumab responders had a localized enrichment of tumor and CD4+ T cells, which coincided with immune activation and cytotoxic PD-1+ CD4+ T cells. In contrast, non-responders had a localized enrichment of Tregs pre- and post-treatment, consistent with a persistently immunosuppressed TME and exhausted PD-1+ CD4+ T cells. Integrating these findings by computing the physical distances between PD-1+ CD4+ T cells, tumor cells, and Tregs revealed a spatial biomarker predictive of pembrolizumab response. Finally, the chemokine CXCL13 was upregulated in tumor cells in responders post-treatment, suggesting that chemoattraction of PD-1+ CD4+ T cells towards tumor cells facilitates a positive outcome. Together, these data show that T cell topography reflects the balance of effector and suppressive activity within the TME and predicts clinical response to PD-1 blockade in CTCL.


2017 ◽  
Vol 137 (8) ◽  
pp. 1766-1773 ◽  
Author(s):  
Naomi Takahashi ◽  
Makoto Sugaya ◽  
Hiraku Suga ◽  
Tomonori Oka ◽  
Makiko Kawaguchi ◽  
...  

Blood ◽  
2007 ◽  
Vol 110 (11) ◽  
pp. 1381-1381
Author(s):  
Chunlei Zhang ◽  
Baoqiang Li ◽  
Rakhshandra Talpur ◽  
C. Cameron Yin ◽  
Madeleine Duvic

Abstract Profiling gene expression with DNA microarray technology has elucidated novel therapeutic targets and led the approval of a number of targeted therapeutic agents for the treatment of cancer. Vorinostat (suberoylanilide hydroxamic acid, SAHA) is a pan-histone deacetylase (HDAC) inhibitor that has demonstrated an overall response rate of approximately 24–30% in two phase II studies of cutaneous T cell lymphoma (CTCL) patients. There are currently no known specific biomarkers to indicate resistance to vorinostat. To identify genes resistant to vorinostat we compared profiles using the Aligent whole human genome oligo microarrays containing ∼41,000 genes/transcripts in vitro in vorinostat-resistant MJ and -sensitive HH CTCL cell lines treated with 1 μM of vorinostat for 24 hours and compared them to patients’ peripheral blood mononuclear cells (PBMCs) before and during oral therapy. There were 3151 (7.7%) genes/transcripts differentially expressed in vitro in treated resistant MJ cells compared to untreated vehicle control (p < 0.001). We also studied differential gene expression in two clinically resistant Sézary patients’ PBMCs taken at baseline and four weeks after oral vorinostat (400 mg daily or 300 mg bid 3 days/wk). In patients’ PBMCs, 585 (1.4%) and 2744 (6.7%) differentially expressed genes/transcripts (p < 0.001) were identified, respectively. Genes that were up-regulated both in vitro and in vivo included a tumor necrosis factor receptor super-family member 11a (TNFRSF11a or RANK), matrix metallopeptidase 9 (MMP9), suppressor of cytokine signaling 3 (SOCS3), vinculin (VCL) and KIAA1840. Genes that were down-regulated in both included adenylate kinase 3-like 1 (AK3L1), leucine rich repeat and fibronectin type III domain containing 4 (LRFN4), and AL359650. Increased RANK, MMP9 and SOCS3 mRNA expression in MJ compared to HH cells and in three resistant versus three vorinostat responding Sézary patients’ PBMCs was confirmed using quantitative real-time PCR. In conclusion, our results suggest that oligonucleotide microarray analysis may identify biomarkers of resistance to vorinostat which would be helpful to select patients who may not benefit from treatment. These findings provide the rationale for future functional studies and development of more effective use of HDAC inhibitors for CTCL patients.


2021 ◽  
Author(s):  
Garry Nolan ◽  
Darci Phillips ◽  
Magdalena Matusiak ◽  
Belén Gutierrez ◽  
Salil Bhate ◽  
...  

Abstract Anti-PD-1 immunotherapies have transformed cancer treatment, yet the determinants of clinical response are largely unknown. We performed CODEX multiplexed tissue imaging and RNA sequencing on 70 tumor regions from 14 advanced cutaneous T cell lymphoma (CTCL) patients enrolled in a clinical trial of pembrolizumab therapy. Clinical response was not associated with the frequency of tumor-infiltrating T cell subsets, but rather with striking differences in the spatial organization and functional immune state of the tumor microenvironment (TME). After treatment, pembrolizumab responders had a localized enrichment of tumor and CD4+ T cells, which coincided with immune activation and cytotoxic PD-1+ CD4+ T cells. In contrast, non-responders had a localized enrichment of Tregs pre- and post-treatment, consistent with a persistently immunosuppressed TME and exhausted PD-1+ CD4+ T cells. Integrating these findings by computing the physical distances between PD-1+ CD4+ T cells, tumor cells, and Tregs revealed a spatial biomarker predictive of pembrolizumab response. Finally, the chemokine CXCL13 was upregulated in tumor cells in responders post-treatment, suggesting that chemoattraction of PD-1+ CD4+ T cells towards tumor cells facilitates a positive outcome. Together, these data show that T cell topography reflects the balance of effector and suppressive activity within the TME and predicts clinical response to PD-1 blockade in CTCL.


Blood ◽  
1998 ◽  
Vol 91 (11) ◽  
pp. 4331-4341 ◽  
Author(s):  
Martine Bagot ◽  
Hamid Echchakir ◽  
Fathia Mami-Chouaib ◽  
Marie-Hélène Delfau-Larue ◽  
Dominique Charue ◽  
...  

We have isolated several T-cell clones from lymphocytes infiltrating a human major histocompatibility class (MHC) II negative cutaneous T-cell lymphoma (CTCL). We describe here two of these clones, TC5 and TC7, with, respectively, a CD4+CD8dim+ and CD4+CD8− phenotype. Both clones mediated a specific MHC class I–restricted cytotoxic activity toward the fresh autologous tumor cells, and autologous tumor cell lines previously established with interleukin-2 (IL-2) and IL-7 from the skin and from the blood. Analysis of the T-cell receptor (TCR) Vβ gene expression showed that the tumor cells, which were shown to have a trisomy 7 by fluorescent in situ hybridization, expressed Vβ7/Jβ2.3, Vβ13/Jβ2.5, and Vβ22/Jβ2.5 rearrangements. Phenotypic analysis using specific anti-Vβ monoclonal antibodies indicated that only Vβ13 could be detected on the cell membrane of the tumor cells. Analysis of the TCR Vβ gene expression of the clones showed that TC5 and TC7 expressed a unique TCR-Vβ transcript, corresponding, respectively, to Vβ5/Jβ2.3 and Vβ17/Jβ2.7 gene segments. To determine whether these reactive T lymphocytes were present in vivo, we used specific primers corresponding to TC5- and TC7-Vβ TCR transcripts. The results showed that both cytotoxic T-cell clones were present at the lesional skin site and amplified in vitro. TC7 was found in the patient peripheral blood invaded by tumoral cells, whereas TC5 was not, indicating that the repertoire of the reactional lymphocytes differs in the blood and at the tumor site. These results show for the first time the presence of reactive T lymphocytes with CD4 or double-positive phenotype infiltrating a CTCL. These findings raise the question of the role of these antitumoral effector T cells in the tumor growth.


Blood ◽  
2002 ◽  
Vol 99 (8) ◽  
pp. 2929-2939 ◽  
Author(s):  
Carole L. Berger ◽  
Douglas Hanlon ◽  
Daniel Kanada ◽  
Madhav Dhodapkar ◽  
Vivian Lombillo ◽  
...  

Abstract In the initial stage of cutaneous T-cell lymphoma (CTCL), proliferating CTCL cells are concentrated in the epidermis in close association with an immature dendritic cell (DC), the Langerhans cell. Because long-term in vitro culture of CTCL cells has proven difficult, the in vivo association with the major antigen-presenting cell (APC) of the epidermis has been postulated to play a role in directly stimulating the clonal T-cell proliferation. We report that CTCL cells can be reproducibly grown in culture for 3 months when cocultured with immature DCs. CTCL cells retain the phenotype and genotype of the initial malignant clone, whereas the APCs are a mixture of immature and mature DCs. CTCL cell and DC survival was dependent on direct membrane contact. Growth was inhibited by antibodies that bound to the T-cell receptor (TCR) or interfered with the interaction of CD40 with its ligand on the CTCL cell. Addition of antibody to CD3 or the clonotypic TCR caused rapid CTCL cell apoptosis followed by engulfment by avidly phagocytic immature DCs and subsequent DC maturation. The opportunity to study CTCL cells and immature DCs for prolonged periods will facilitate studies of tumor cell biology and will allow investigation of the intriguing hypothesis that CTCL cell growth is driven through TCR recognition of class II–presented self-peptides. In addition, the culture of CTCL cells will permit evaluation of therapies in vitro before clinical intervention, thereby improving safety and efficacy.


Sign in / Sign up

Export Citation Format

Share Document