Determination of calcium carbonate and styrene-butadiene latex content in the coating layer of coated paper

2014 ◽  
Vol 20 (4) ◽  
pp. 1571-1576 ◽  
Author(s):  
Huan Zhao ◽  
Qingxi Hou ◽  
Yimei Hong ◽  
Wei Liu ◽  
Yang Li ◽  
...  
TAPPI Journal ◽  
2011 ◽  
Vol 10 (7) ◽  
pp. 29-34
Author(s):  
TEEMU PUHAKKA ◽  
ISKO KAJANTO ◽  
NINA PYKÄLÄINEN

Cracking at the fold is a quality defect sometimes observed in coated paper and board. Although tensile and compressive stresses occur during folding, test methods to measure the compressive strength of a coating have not been available. Our objective was to develop a method to measure the compressive strength of a coating layer and to investigate how different mineral coatings behave under compression. We used the short-span compressive strength test (SCT) to measure the in-plane compressive strength of a free coating layer. Unsupported free coating films were prepared for the measurements. Results indicate that the SCT method was suitable for measuring the in-plane compressive strength of a coating layer. Coating color formulations containing different kaolin and calcium carbonate minerals were used to study the effect of pigment particles’ shape on the compressive and tensile strengths of coatings. Latices having two different glass transition temperatures were used. Results showed that pigment particle shape influenced the strength of a coating layer. Platy clay gave better strength than spherical or needle-shaped carbonate pigments. Compressive and tensile strength decreased as a function of the amount of calcium carbonate in the coating color, particularly with precipitated calcium carbonate. We also assessed the influence of styrene-butadiene binder on the compressive strength of the coating layer, which increased with the binder level. The compressive strength of the coating layer was about three times the tensile strength.


2014 ◽  
Vol 884-885 ◽  
pp. 212-215
Author(s):  
Ying Li ◽  
Wen Juan Gu ◽  
Bang Gui He

The physical structure of coating layer have an important influence on transferring and setting of the printing ink. In this study, the effect of pigment on surface microstructure and surface free energy was investigated. The findings indicated that the pigment affected the pore size, depth and distribution of the coated paper surface. Kaolin pigment compared with calcium carbonate pigment was good to improve the paper surface smoothness. Surface free energy of kaolin pigment coating was higher than calcium carbonate pigment coating, which showed that surface wettability of coating with kaolin pigment was better than calcium carbonate pigment.


2011 ◽  
Vol 415-417 ◽  
pp. 237-242
Author(s):  
Zhou Da Zhang ◽  
Xue Mei Chen ◽  
Guo Liang Qu

Calcium carbonate nanoparticles (nano-CaCO3) filled powdered styrene-butadiene rubber (P(SBR/CaCO3) was prepared by adding nano-CaCO3 particles, encapsulant and coagulant to styrene-butadiene rubber (SBR) latex by coacervation, and the particle size distribution, structure were studied. Scanning electron microscopy (SEM) was used to investigate the (P(SBR/CaCO3) particle structure, and a powdering model was proposed to describe the powdering process. The process includes: (i) the latex particles associated with the dispersed nano-CaCO3 particles (adsorption process) to form “new particles” and (ii) the formation of P(SBR/CaCO3) by coagulating “new particles”. The SEM results also shown that the nano-CaCO3 and rubber matrix have formed a macroscopic homogenization in the (P(SBR/CaCO3) particles and nano-CaCO3 dispersed uniformly in the rubber matrix with an average diameter of approximately 50 nm.


Sign in / Sign up

Export Citation Format

Share Document