Strain-induced Carrier Mobility Modulation in Organic Semiconductors

Author(s):  
Byeongsun Jun ◽  
Chi Ho Lee ◽  
Sang Uck Lee
2003 ◽  
Vol 769 ◽  
Author(s):  
Antonio Facchetti ◽  
Myung-Han Yoon ◽  
Howard E. Katz ◽  
Melissa Mushrush ◽  
Tobin J. Marks

AbstractOrganic semiconductors exhibiting complementary-type carrier mobility are the key components for the development of the field of “plastic electronics”. We present here a novel series of αω- and isomerically pure β,β'-diperfluorohexyl-substituted thiophene and study the impact of fluoroalkyl substitution and conjugation length vìs-à-vìs the corresponding fluorinefree analogues. Trends between the fluorinated and fluorine-free families in molecular packing, HOMO-LUMO gap, and π-π interactions are found to be strikingly similar. TFT measurements indicate that all members of the fluorinated series are n-type semiconductors


2003 ◽  
Vol 771 ◽  
Author(s):  
Antonio Facchetti ◽  
Myung-Han Yoon ◽  
Howard E. Katz ◽  
Melissa Mushrush ◽  
Tobin J. Marks

AbstractOrganic semiconductors exhibiting complementary-type carrier mobility are the key components for the development of the field of “gplastic electronics” We present here a novel series of α,ω- and isomerically pure ββ'-diperfluorohexyl-substituted thiophene and study the impact of fluoroalkyl substitution and conjugation length vis-a-vis the corresponding fluorinefree analogues. Trends between the fluorinated and fluorine-free families in molecular packing, HOMO-LUMO gap, and π-π interactions are found to be strikingly similar. TFT measurements indicate that all members of the fluorinated series are n-type semiconductors


2002 ◽  
Vol 299-302 ◽  
pp. 1047-1051 ◽  
Author(s):  
V.I Arkhipov ◽  
E.V Emelianova ◽  
G.J Adriaenssens ◽  
H Bässler

2022 ◽  
Author(s):  
Alana Dixon ◽  
Herve Vezin ◽  
Thuc-Quyen Nguyen ◽  
G. N. Manjunatha Reddy

Molecular doping strategies facilitate orders of magnitudes enhancements in the charge carrier mobility of organic semiconductors (OSCs). Understanding the mechanisms of different doping strategies for OSCs and molecular-level constraints on...


Polymers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1463
Author(s):  
Tongchao Liu ◽  
Dexun Xie ◽  
Jinjia Xu ◽  
Chengjun Pan

π-conjugated backbones play a fundamental role in determining the thermoelectric (TE) properties of organic semiconductors. Understanding the relationship between the structure–property–function can help us screen valuable materials. In this study, we designed and synthesized a series of conjugated copolymers (P1, P2, and P3) based on an indacenodithiophene (IDT) building block. A copolymer (P3) with an alternating donor–acceptor (D-A) structure exhibits a narrower band gap and higher carrier mobility, which may be due to the D-A structure that helps reduce the charge carrier transport obstacles. In the end, its power factor reaches 4.91 μW m−1 K−2 at room temperature after doping, which is superior to those of non-D-A IDT-based copolymers (P1 and P2). These results indicate that moderate adjustment of the polymer backbone is an effective way to improve the TE properties of copolymers.


Sign in / Sign up

Export Citation Format

Share Document