N- and P-Type Building Blocks for Organic Electronics Based on Oligothiophene Cores

2003 ◽  
Vol 771 ◽  
Author(s):  
Antonio Facchetti ◽  
Myung-Han Yoon ◽  
Howard E. Katz ◽  
Melissa Mushrush ◽  
Tobin J. Marks

AbstractOrganic semiconductors exhibiting complementary-type carrier mobility are the key components for the development of the field of “gplastic electronics” We present here a novel series of α,ω- and isomerically pure ββ'-diperfluorohexyl-substituted thiophene and study the impact of fluoroalkyl substitution and conjugation length vis-a-vis the corresponding fluorinefree analogues. Trends between the fluorinated and fluorine-free families in molecular packing, HOMO-LUMO gap, and π-π interactions are found to be strikingly similar. TFT measurements indicate that all members of the fluorinated series are n-type semiconductors

2003 ◽  
Vol 769 ◽  
Author(s):  
Antonio Facchetti ◽  
Myung-Han Yoon ◽  
Howard E. Katz ◽  
Melissa Mushrush ◽  
Tobin J. Marks

AbstractOrganic semiconductors exhibiting complementary-type carrier mobility are the key components for the development of the field of “plastic electronics”. We present here a novel series of αω- and isomerically pure β,β'-diperfluorohexyl-substituted thiophene and study the impact of fluoroalkyl substitution and conjugation length vìs-à-vìs the corresponding fluorinefree analogues. Trends between the fluorinated and fluorine-free families in molecular packing, HOMO-LUMO gap, and π-π interactions are found to be strikingly similar. TFT measurements indicate that all members of the fluorinated series are n-type semiconductors


Author(s):  
Andrey Sosorev ◽  
Dmitry Dominskiy ◽  
Ivan Chernyshov ◽  
Roman Efremov

Chemical versatility of organic semiconductors provides nearly unlimited opportunities for tuning their electronic properties. However, despite decades of research, relationship between molecular structure, molecular packing and charge mobility in these materials remains poorly understood. This reduces the search for high-mobility organic semiconductors to the inefficient trial-and-error approach. For clarifying the abovementioned relationship, investigations of the effect of small changes in the chemical structure on OSs properties are particularly important. In this study, we address computationally the impact of substitution of C-H atom pairs by nitrogen atoms (N-substitution) on molecular properties, molecular packing and charge mobility of crystalline oligoacenes. Besides of decreasing frontier molecular orbital levels, N-substitution dramatically alters molecular electrostatic potential yielding pronounced electron-rich and electron-deficient areas. These changes in the molecular electrostatic potential strengthen face-to-face and edge-to-edge interactions in the corresponding crystals and result in the crossover from the herringbone packing motif to π-stacking. When the electron-rich and electron-deficient areas are large, sharply defined and, probably, have certain symmetry, charge mobility increases up to 3-4 cm2V-1s-1. The results obtained highlight the potential of azaacenes for application in organic electronic devices and are expected to facilitate rational design of organic semiconductors for steady improvement of organic electronics.


2022 ◽  
Author(s):  
Yan Zeng ◽  
Guangchao Han ◽  
Yuanping Yi

Electrical conductivity is one of the key parameters for organic thermoelectrics and depends on both the concentration and mobility of charge carriers. To increase the carrier concentration, molecular dopants have to be added into organic semiconductor materials, whereas the introduction of dopants can influence the molecular packing structures and hence carrier mobility of the organic semiconductors. Herein, we have theoretically investigated the impact of different n-doping mechanisms on molecular packing and electron transport properties by taking N-DMBI-H and Q-DCM-DPPTT respectively as representative n-dopant and molecular semiconductor. The results show that when the doping reactions and charge transfer spontaneously occur in the solution at room temperature, the oppositely charged dopant and semiconductor molecules will be tightly bound to disrupt the semiconductor to form long-range molecular packing, leading to a substantial decrease of electron mobility in the doped film. In contrast, when the doping reactions and charge transfer are activated by heating the doped film, the molecular packing of the semiconductor is slight affected and hence the electron mobility remains quite high. This work indicates that thermally-activated n-doping is an effective way to achieve both high carrier concentration and high electron mobility in n-type organic thermoelectric materials.


2021 ◽  
Author(s):  
Wenping Hu ◽  
Liqiang Li ◽  
Yinan Huang ◽  
Xiaosong Chen ◽  
Kunjie Wu ◽  
...  

Abstract Organic semiconductors (OSC) are generally considered intrinsic (undoped), an assumption which underpins our understanding of the charge transport in this promising class of materials. However, this premise conflicts with a variety of experimental observations, that suggest the presence of excess holes carriers in OSCs at room temperature. Here, using a low-power plasma de-doping method, we report that trace amounts (~1015 cm-3) of oxygen-induced organic radical cations (OIORCs) are inherent in the lattice of OSCs as innate hole carriers, and that this is the origin of the p-type characteristics exhibited by the majority of these materials. This finding clarifies previously unexplained organic electronics phenomena and provides a foundation upon which to re-understand charge transport in OSCs. Furthermore, the de-doping method can eliminate the trace OIORCs, resulting in the complete disappearance of p-type behavior, while re-doping (under light irradiation in O2), reverses the process. These methods can precisely modulate key electronic characteristics (e.g., conductivity, polarity, and threshold voltage) in a nondestructive way, expanding the explorable charge transport property space for all known OSC materials. Accordingly, we conclude that our tailorable OIORC doping strategy, requiring only off-the-shelf equipment and a glovebox, will become a core technology in the burgeoning organic electronics industry.


ChemPhysChem ◽  
2009 ◽  
Vol 10 (13) ◽  
pp. 2345-2348 ◽  
Author(s):  
Huaping Zhao ◽  
Lang Jiang ◽  
Huanli Dong ◽  
Hongxiang Li ◽  
Wenping Hu ◽  
...  

2018 ◽  
Vol 20 (13) ◽  
pp. 8897-8908 ◽  
Author(s):  
Waldemar Kaiser ◽  
Tim Albes ◽  
Alessio Gagliardi

Kinetic Monte Carlo study of the impact of spatial and energetic disorder on charge mobility, current distribution and transport energy in organic semiconductors.


2016 ◽  
Vol 4 (18) ◽  
pp. 4040-4048 ◽  
Author(s):  
Karl J. Thorley ◽  
Chad Risko

Using benzodithiophene as a model compound, the concept of the disordermer is introduced to discuss how intermolecular isomerism in the solid state can result in a wide range of available molecular packing arrangements that in turn influence the magnitude of the electronic coupling, a key parameter of importance to the performance of organic semiconductors.


Sign in / Sign up

Export Citation Format

Share Document