Construction of antibody mimics from a noncatalytic enzyme–detection of polysialic acid

2004 ◽  
Vol 295 (1-2) ◽  
pp. 149-160 ◽  
Author(s):  
Anne Jokilammi ◽  
Pauli Ollikka ◽  
Miikka Korja ◽  
Elina Jakobsson ◽  
Vuokko Loimaranta ◽  
...  
2019 ◽  
Vol 19 (25) ◽  
pp. 2271-2282 ◽  
Author(s):  
Bo Lu ◽  
Xue-Hui Liu ◽  
Si-Ming Liao ◽  
Zhi-Long Lu ◽  
Dong Chen ◽  
...  

Polysialic acid (polySia) is a novel glycan that posttranslationally modifies neural cell adhesion molecules (NCAMs) in mammalian cells. Up-regulation of polySia-NCAM expression or NCAM polysialylation is associated with tumor cell migration and progression in many metastatic cancers and neurocognition. It has been known that two highly homologous mammalian polysialyltransferases (polySTs), ST8Sia II (STX) and ST8Sia IV (PST), can catalyze polysialylation of NCAM, and two polybasic domains, polybasic region (PBR) and polysialyltransferase domain (PSTD) in polySTs play key roles in affecting polyST activity or NCAM polysialylation. However, the molecular mechanisms of NCAM polysialylation and cell migration are still not entirely clear. In this minireview, the recent research results about the intermolecular interactions between the PBR and NCAM, the PSTD and cytidine monophosphate-sialic acid (CMP-Sia), the PSTD and polySia, and as well as the intramolecular interaction between the PBR and the PSTD within the polyST, are summarized. Based on these cooperative interactions, we have built a novel model of NCAM polysialylation and cell migration mechanisms, which may be helpful to design and develop new polysialyltransferase inhibitors.


2019 ◽  
Vol 15 (5) ◽  
pp. 486-495 ◽  
Author(s):  
Li-Xin Peng ◽  
Xue-Hui Liu ◽  
Bo Lu ◽  
Si-Ming Liao ◽  
Feng Zhou ◽  
...  

Background:The polysialic acid (polySia) is a unique carbohydrate polymer produced on the surface Of Neuronal Cell Adhesion Molecule (NCAM) in a number of cancer cells, and strongly correlates with the migration and invasion of tumor cells and with aggressive, metastatic disease and poor clinical prognosis in the clinic. Its synthesis is catalyzed by two polysialyltransferases (polySTs), ST8SiaIV (PST) and ST8SiaII (STX). Selective inhibition of polySTs, therefore, presents a therapeutic opportunity to inhibit tumor invasion and metastasis due to NCAM polysialylation. Heparin has been found to be effective in inhibiting the ST8Sia IV activity, but no clear molecular rationale. It has been found that polysialyltransferase domain (PSTD) in polyST plays a significant role in influencing polyST activity, and thus it is critical for NCAM polysialylation based on the previous studies.Objective:To determine whether the three different types of heparin (unfractionated hepain (UFH), low molecular heparin (LMWH) and heparin tetrasaccharide (DP4)) is bound to the PSTD; and if so, what are the critical residues of the PSTD for these binding complexes?Methods:Fluorescence quenching analysis, the Circular Dichroism (CD) spectroscopy, and NMR spectroscopy were used to determine and analyze interactions of PSTD-UFH, PSTD-LMWH, and PSTD-DP4.Results:The fluorescence quenching analysis indicates that the PSTD-UFH binding is the strongest and the PSTD-DP4 binding is the weakest among these three types of the binding; the CD spectra showed that mainly the PSTD-heparin interactions caused a reduction in signal intensity but not marked decrease in α-helix content; the NMR data of the PSTD-DP4 and the PSTDLMWH interactions showed that the different types of heparin shared 12 common binding sites at N247, V251, R252, T253, S257, R265, Y267, W268, L269, V273, I275, and K276, which were mainly distributed in the long α-helix of the PSTD and the short 3-residue loop of the C-terminal PSTD. In addition, three residues K246, K250 and A254 were bound to the LMWH, but not to DP4. This suggests that the PSTD-LMWH binding is stronger than the PSTD-DP4 binding, and the LMWH is a more effective inhibitor than DP4.Conclusion:The findings in the present study demonstrate that PSTD domain is a potential target of heparin and may provide new insights into the molecular rationale of heparin-inhibiting NCAM polysialylation.


2021 ◽  
Vol 33 (22) ◽  
pp. 2170173
Author(s):  
Tae Woog Kang ◽  
In‐Jun Hwang ◽  
Sin Lee ◽  
Su‐Ji Jeon ◽  
Chanhee Choi ◽  
...  
Keyword(s):  

1994 ◽  
Vol 269 (36) ◽  
pp. 22712-22718 ◽  
Author(s):  
S. Kitazume ◽  
K. Kitajima ◽  
S. Inoue ◽  
F.A. Troy ◽  
J.W. Cho ◽  
...  

2021 ◽  
Vol 259 ◽  
pp. 117741
Author(s):  
Xiaoxiao Guo ◽  
Sara M. Elkashef ◽  
Anjana Patel ◽  
Goreti Ribeiro Morais ◽  
Steven D. Shnyder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document